
 Advanced search

Linux Journal Issue #100/August 2002

Features

Linux Timeline by LWN and LJ Staff
All grown up and old enough to have a history—take a look at
100 of the most memorable Linux events.

Indepth

Supporting IPv6 on a Linux Server Node by Ibrahim Haddad and
Marc Blanchet

These changing times: set up your own IPv6 server and connect
to the IPv6 world.

Bare Metal Recovery, Revisited by Charles Curley
Charles upgrades and simplifies his popular backup scripts.

The Linux Router by Kaleem Anwar, Muhammad Amir, Ahmad Saeed
and Muhammad Imran

Sure a Linux router is cheaper than a Cisco router, but how does
it stack up performance-wise?

The Beowulf Evolution by Glen Otero and Richard Ferri
The second-generation Beowulf adds some powerful new
features.

How a Poor Contract Sunk an Open-Source Deal by Henry W. Jones,
III

MySQL AB and NuSphere—is their weak contract at the base of
their woes?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/100/6000.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5484.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6019.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6025.html

Embedded

From the Editor by Don Marti
Hey, Embedded Developers! Buy This Magazine!

Driving Me Nuts by Greg Kroah-Hartman
The tty Layer

Embedded Systems À La Carte by Peter Ryser and Michael Baxter
Replacing hardware on the chip while dynamically loading the
proper Linux driver? No way!

GNU Bayonne is for Telephony by David Sugar
Sugar explains the best thing going in telephony software.

Toolbox

Kernel Korner Kernel Locking Techniques by Robert Love
At the Forge Why Linux? by Reuven M. Lerner
Cooking with Linux Strike up the Band and Celebrate! by Marcel
Gagné
Paranoid Penguin Using iptables for Local Security by Mick Bauer

Columns

Focus on Software Internet Abuse by David A. Bandel
Embedded Perspective Where No Penguin Has Gone Before by Rick
Lehrbaum
Linux for Suits Scoring 100 by Doc Searls
Geek Law Fair Use by Lawrence Rosen

Reviews

ASA 2URS3 Rackmount 2U Server by Logan G. Harbaugh
ImageStream's Rebel Router by Paul M. Holzmann
OmniCluster Technologies' SlotServer by Linda Hypes
Benchmark's ValuSmart Tape 80 by Cosimo Leipold

Departments

Letters
upFRONT
From the Editor Welcome to the 100th Issue by Richard Vernon
Best of Technical Support
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/6109.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5896.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6073.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6077.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5833.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6084.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6083.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6091.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6079.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6090.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6067.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6080.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5756.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5846.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5880.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5911.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6124.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6039.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6114.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6113.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6119.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Timeline

LWN

LJ Staff

Issue #100, August 2002

100 of the most significant events in Linux history.

As part of our 100th issue celebration, we present 100 of the most significant
events in Linux history. As shown in the timeline, the first issue of Linux Journal
coincided with the release of Linux 1.0. Ever since, the fortunes of our magazine
have followed those of Linux at large.

It's been a wild eight years, filled with a variety of exciting events. Choosing only
100 was a difficult task, and certainly some readers will be quick to point out
events they would have chosen that we did not, but the following manages to
maintain the roller-coaster ride that is Linux history.

We would like to recognize our indebtedness to Rebecca Sobol and Jonathan
Corbet at Linux Weekly News, for allowing us to borrow heavily from the
timeline featured on their site and for their accurate and gracious historical
editing.

August 1991

“Hello everybody out there using minix - I'm doing a (free) operating system
(just a hobby, won't be big and professional like gnu) for 386(486) AT clones.
This has been brewing since april, and is starting to get ready. I'd like any
feedback on things people like/dislike in minix, as my OS resembles it
somewhat (same physical layout of the file-system (due to practical reasons)
among other things).I've currently ported bash(1.08) and gcc(1.40), and things
seem to work. This implies that I'll get something practical within a few months,
and I'd like to know what features most people would want. Any suggestions
are welcome, but I won't promise I'll implement them :-) Linus (PS. Yes - it's free
of any minix code, and it has a multi-threaded fs. It is NOT protable (uses 386

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

task switching etc), and it probably never will support anything other than AT-
harddisks, as that's all I have :-(.”

September 1991

Linux version 0.01 is released and put on the Net.

April 1992

The first Linux newsgroup, comp.os.linux, is proposed and started by Ari
Lemmke.

October 1992

Peter MacDonald announces SLS, the first standalone Linux install. At least
10MB of space on disk was recommended.

June 1993

Slackware, by Patrick Volkerding, becomes the first commercial standalone
distribution and quickly becomes popular within the Linux community.

August 1993

Matt Welsh's Linux Installation and Getting Started, version 1 is released. This is
the first book on Linux.

March 1994

The first issue of Linux Journal is published. This issue featured an interview
with Linus Torvalds and articles written by Phil Hughes, Robert “Bob” Young,
Michael K. Johnson, Arnold Robbins, Matt Welsh, Ian A. Murdock, Frank B.
Brokken, K. Kubat, Micahel Kraehe and Bernie Thompson. Advertisers in the
premier issue include Algorithms Inc., Amtec Engineering, Basmark, Fintronic
(later became VA Research, VA Linux Systems, then...), Infomagic, Prime Time
Freeware, Promox, Signum Support, SSC, Trans Ameritech, USENIX, Windsor
Tech and Yggdrasil.

Linux 1.0 is released.

June 1994

While at a conference in New Orleans, Jon “maddog” Hall persuades Linus to
port Linux to DEC's 64-bit Alpha computer processor chip. Less than two weeks
later, maddog had also persuaded DEC to fund the project. An Alpha
workstation was immediately sent to Linus. “Digital [DEC] and the Linux

community formed the first truly successful venture of suits and Linux geeks
working together”, said maddog.

Linux International, a nonprofit vendor organization, is founded by Jon
“maddog” Hall. Linux International goes on to become a major contributor to
the success of Linux, helping corporations and others work toward the
promotion of the Linux operating system.

August 1994

Linux trademark dispute: is Linux trademarked? William R. Della Croce, Jr. files
for the trademark “Linux” on August 15, 1994, and it is registered in September.
Della Croce has no known involvement in the Linux community yet sends
letters out to prominent Linux companies demanding money for use of the
trademark “Linux”. A lawsuit is filed in 1996 against Della Croce. Plai.pngfs in
the suit include Linus Torvalds; Specialized Systems Consultants, Inc.
(publishers of Linux Journal); Yggdrasil Computing, Inc.; Linux International; and
WorkGroup Solutions (also known as LinuxMall). The plaintiffs prevail, and in
1997 announce the matter as settled by the assignment of the mark to Linus
Torvalds on behalf of all Petitioners and Linux users.

September 1994

Linux is first mentioned in the mainstream press. Wired magazine features an
article titled “Kernel Kid”, by Seth Rosenthal. He writes: “So, is Linus going to
become the Bill Gates of Finland? Maybe not. He claims to be 'by no means a
good student' and is in no hurry to graduate since 'Linux has taken a lot of time
from my studies, and I like the work I have at the University which keeps me
alive.”'

Randolph Bentson reports on the world's first vendor-supported Linux device
driver in Linux Journal. Cyclades gave him a multiport serial card in exchange
for developing a Linux driver for it.

December 1994

A major tradeshow and conference take notice of Linux. Open Systems World
features a Linux track, hosted by Linux Journal. Two days of seminars include
Eric Youngdale, Donald Becker, Dirk Hohndel, Phil Hughes, Michael K. Johnson
and David Wexelblat as speakers.

April 1995

Linux Expo, the first Linux-specific tradeshow and conference series, launches,
thanks to the folks at North Carolina State University and in particular, Donnie

Barnes. Speakers include Marc Ewing, Rik Faith and Michael K. Johnson, among
others. Linux Expo snowballs and becomes the most popular and well-attended
annual Linux show for the next several years (after three years Red Hat takes
over organization and becomes the major sponsor). The price for entry into the
exhibit hall and a pass to the conferences? $4.

January 1997

First “Linux virus” discovered. Called Bliss, it actually works on any UNIX-like OS
and offers a helpful—“bliss-uninfect-files-please” command-line option. Alan
Cox points out that Bliss “does not circumvent the security of the system, it
relies on people with privilege to do something dumb” and reminds users to
install digitally signed software from trustworthy sites only and to check
signatures before installing.

“In fact it's probably easier to write a virus for Linux because it's open source
and the code is available. So we will be seeing more Linux viruses as the OS
becomes more common and popular.” —Wishful thinking from McAfee

January 1998

Linux Weekly News begins publication with Jonathan Corbet and Elizabeth
Coolbaugh as founders. The very first issue, dated January 22, was just a tiny
hint of what LWN was to become.

Netscape announces that they will release the source to their browser under a
free software license. This almost certainly remains one of the most important
events of the year; it opened a lot of eyes to what Linux and free software could
provide.

Red Hat Advanced Development Labs (RHAD) is founded. It has since become
one of the higher-profile places where people are paid to develop free software
and an important component of the GNOME Project. RHAD is able to attract
developers like “Rasterman” (although only for a short time) and Federico
Mena-Quintero.

February 1998

The Cobalt Qube is announced and immediately becomes a favorite in the
trade press due to its high performance, low price and cute form factor.
Cobalt's Linux engineering is done by none other than David Miller, the source
of much that is good in the Linux kernel.

The Linux user community wins InfoWorld's technical support award; Red Hat
5.0 also won their Operating System award. But it was the tech support award

that truly opened some eyes; everybody had been saying that Linux had no
support. This was the beginning of the end of the “no support” argument.

Eric Raymond and friends come up with the term “open source”. They apply for
trademark status and put up the opensource.org web site. Thus begins the
formal effort to push Linux for corporate use.

March 1998

Consumer advocate Ralph Nader asks the large PC vendors (Dell, Gateway,
Micron, etc.) to offer non-Microsoft systems, including systems with Linux
installed.

April 1998

Linux is covered by the US National Public Radio news, marking one of its first
appearances in the mainstream, nontechnical press.

O'Reilly holds the “first ever” Free Software Summit, featuring Larry Wall, Brian
Behlendorf, Linus Torvalds, Guido van Rossum, Eric Allman, Phil Zimmermann,
Eric Raymond and Paul Vixie.

May 1998

The Google search engine pops up. Not only is it one of the best search engines
around, but it's based on Linux and features a Linux-specific search page.

Big databases start to arrive. Support for Linux is announced by Computer
Associates for their Ingres system and by Ardent Software for their O2 object
database.

June 1998

“Like a lot of products that are free, you get a loyal following even though it's
small. I've never had a customer mention Linux to me.” —Bill Gates, PC Week,
June 25, 1998

“...these operating systems will not find widespread use in mainstream
commercial applications in the next three years, nor will there be broad third-
party application support.” —The Gartner Group says there is little hope for
free software.

A Datapro study comes out showing that Linux has the highest user satisfaction
of any system; it also shows Linux to be the only system other than Microsoft
Windows NT that is increasing its market share.

http://opensource.org

IBM announces that it will distribute and support the Apache web server after
working a deal with the Apache team.

July 1998

The desktop wars rage as KDE and GNOME advocates hurl flames at each
other. Linus gets in on the act, saying that KDE is okay with him. In this context,
KDE 1.0 is released. The first stable release of the K Desktop Environment
proves to be popular, despite the complaints from those who do not like the
licensing of the Qt library.

Informix quietly releases software for Linux. Meanwhile, Oracle beats Informix
to the punch PR-wise and makes a Linux-friendly announcement first,
suggesting that they would soon be supporting Linux. Oracle promises to make
a trial version available by the end of 1998, a deadline they beat by months.
This, seemingly, was one of the acid tests for the potential of long-term success
for Linux; a great deal of attention resulted from both Informix's and Oracle's
announcements.

Informix announces support for Linux effectively moments after Oracle does
so. Sybase later announces their support for Linux also.

Linus appears on the cover of Forbes magazine. A lengthy story presents Linux
in a highly positive manner and brings the system to the attention of many who
had never heard of it before. Linux begins to become a household word.

September 1998

LinuxToday.com is launched by Dave Whitinger and Dwight Johnson. The site,
later acquired by Internet.com, arguably becomes the most well-read and
visited Linux portal of all time.

Microsoft's Steve Ballmer admits that they are “worried” about free software
and suggests that some of the Windows NT source code may be made available
to developers. The same month Microsoft goes on to list Linux as a competitive
threat in its annual SEC (US Securities and Exchange Commission) filing.
Speculation abounds that their real purpose is to influence the upcoming
antitrust trial.

October 1998

“For the moment, however, the company from Redmond, Washington, seems
almost grateful for the rising profile of Linux, seeing it as an easy way of
demonstrating that Windows is not a monopoly, ahead of its antitrust trial,
scheduled to begin on October 15. That may be short-sighted. In the long run,

Linux and other open-source programs could cause Mr. Gates much grief.” —
The Economist, October 3, 1998

Intel and Netscape (and two venture capital firms) announce minority
investments in Red Hat Software. The money is to be used to build an
“enterprise support division” within Red Hat. An unbelievable amount of press
is generated by this event, which is seen as a big-business endorsement of
Linux.

Corel announces that WordPerfect 8 for Linux will be downloadable for free for
“personal use”. They also announce a partnership with Red Hat to supply Linux
for the Netwinder.

December 1998

A report from IDC says that Linux shipments rose by more than 200% in 1998,
and its market share rose by more than 150%. Linux has a 17% market share
and a growth rate unmatched by any other system on the market.

January 1999

“Microsoft Corp. will shout it out to the world when Windows 2000 finally ships.
Linux creator Linus Torvalds announced the arrival of the next generation of
Linux, version 2.2, with a simple note to the Linux-kernel mailing list.” —Steven
J. Vaughan-Nichols, Sm@rt Reseller

Samba 2.0 is released. It contains a reverse-engineered implementation of the
Microsoft domain controller protocols, allowing Linux servers to provide
complete services to Windows networks.

Hewlett-Packard and Compaq announce plans to offer Linux-based systems.
Later, Dell also announces plans to begin selling Linux-installed systems. SGI
contents itself with providing information on how to bring up Linux on its
systems.

Loki Entertainment Software announces that it will port Civilization: Call to
Power to Linux.

February 1999

Linux and BSD users unite for “Windows Refund Day”. They visit Microsoft,
hoping to return the unused Windows licenses that they were forced to acquire
when they purchased a computer system bundled with the OS.

March 1999

“Like a Russian revolutionary erased from a photograph, he is being written out
of history. Stallman is the originator of the Free Software movement and the
GNU/Linux operating system. But you wouldn't know it from reading about
LinuxWorld (Expo). Linus Torvalds got all the ink.” —Leander Kahney, Wired
magazine, March 1999

The first LinuxWorld Conference and Expo is held in San Jose, California. As the
first big commercial “tradeshow” event for Linux, it serves notice to the world
that Linux has arrived; 12,000 people are said to have attended.

Linux Magazine debuts, bringing some additional competition to the Linux print
business. Later, other magazines rise and fall including Open, Journal of Linux
Technology (JOLT) and Maximum Linux.

VA Research buys the Linux.com domain for $1,000,000 and announces plans
to turn it into a Linux portal. Microsoft's rumored bid for the domain is
frustrated.

April 1999

“...please imagine what it is like to see an idealistic project stymied and made
ineffective because people don't usually give it the credit for what it has done. If
you're an idealist like me, that can ruin your whole decade.” —Richard Stallman
on GNU/Linux

Al Gore's presidential campaign web site claims to be open source. That claim is
gone, but the site still claims: “In the spirit of the Open Source movement, we
have established the Gore 2000 Volunteer Source Code Project;
www.algore2000.com is an 'open site'.“

HP announces 24/7 support services for the Caldera, Turbolinux, Red Hat and
SuSE distributions. They also release OpenMail for Linux.

The Linux FreeS/WAN Project releases a free IPSec implementation, allowing
Linux to function as a VPN gateway using what is now the industry standard.

“But the mere fact that there is now an official SEC document that includes the
text of the GPL serves as fairly astonishing proof that the rules of the software
business really are being rewritten.” —Andrew Leonard, Salon

http://Linux.com
http://www.algore2000.com

May 1999

“Those two little words—open source—have become a magical incantation, like
portal in 1998 or push in 1997. Just whisper them and all will be yours: media
attention, consumer interest and, of course, venture capital.” —Andrew
Leonard, Wired

August 1999

First Intel IA-64 “Merced” silicon. Although Intel had given simulators to several
OS vendors, Linux is the only OS to run on the new architecture on its first day.
The Register headline: “Merced silicon happens: Linux runs, NT doesn't”.

SGI announces the 1400L—a Linux-based server system. SGI also announces a
partnership with Red Hat and begins contributing to kernel development in a
big way.

Red Hat's initial public offering happens; a last-minute repricing helps to create
difficulties for people participating in the community offering. The stock price
immediately rises to $50; a value that seems high at the time.

“For the umpteenth time, someone paved paradise, put up a parking lot. For
the thousands of Linux coders who've built the utopian open-source movement
—offering free help to create a free operating system—the IPO of Red Hat
Software was a sure sign of Wall Street cutting the ribbon on the new Linux
mall.” —The Industry Standard

Motorola jumps into Linux announcements of embedded systems products,
support and training services, and a partnership with Lineo.

Sun acquires StarDivision; it announces plans to release StarOffice under the
Sun Community Source License and to make a web-enabled version of the
office suite.

September 1999

“'Burlington Coat Factory Warehouse Corp. in Burlington, New Jersey is
spending $1 million or so to buy 1,250 Linux-equipped PCs from Dell, but it
won't pay Red Hat a dime for support', says Michael Prince, chief information
officer. 'I suppose Red Hat's business model makes sense to somebody, but it
makes no sense to us', he says.” —Daniel Lyons, Forbes, May 31, 1999. Then in
September, Burlington ended up purchasing support from Red Hat.

The first big Linux stock rush happens. Shares in Applix more than double in
volume, reaching nearly 27 million shares—three times the 9 million shares
that are actually on the market.

SCO trashes Linux in a brochure distributed in Northern Europe: “Linux at this
moment can be considered more a plaything for IT students rather than a
serious operating system in which to place the functioning, security and future
of a business. Because Linux is basically a free-for-all it means that no
individual person/company is accountable should anything go wrong, plus
there is no way to predict which way Linux will evolve.”

Stock in Red Hat hits $135/share. The price seems unbelievably high at the
time.

October 1999

Sun Microsystems announces that it will release the source to Solaris under the
Sun Community Source License. The actual release drew criticism: “In a move
aimed at Linux, Sun said it will announce Wednesday that it is making the
source code for its new Solaris 8 operating system 'open'. Webster's has lots of
definitions for the word, including 'not sealed, fastened, or locked'. But when
you dig into the details of Sun's announcement, you'll find that what it is
offering doesn't come close to meeting the dictionary's definition, let alone that
of the Open Source movement.” —Lawrence Aragon, Redherring.com, January
26, 2000

November 1999

“...if there's one thing about Linux users, they're do-ers, not whiners.” —Andy
Patrizio,

Red Hat buys Cygnus for almost $700 million in stock. Rumors of other
acquisitions by Red Hat begin to circulate and show no signs of stopping.

December 1999

VA Linux Systems goes public after two repricings (originally priced at $11-$13/
share). The final IPO price is $30/share; that price rises immediately to $300
before closing around $250. It sets the record for the biggest IPO rise in the
history of the NASDAQ.

“Gee. Remember when the big question was 'How do we make money at this?”'
—Eric Raymond

http://Redherring.com

January 2000

VA Linux Systems announces SourceForge (although the site had actually been
up and running since November 1999). SourceForge also makes the code for its
operation available under the GPL. By the end of the year, SourceForge hosted
over 12,000 projects and 92,000 registered developers.

Version 1.0 of Red Flag Linux is released in the People's Republic of China.

Transmeta breaks its long silence and tells the world what it has been up to—
the Crusoe chip, of course.

The Linux Professional Institute announces the availability of its first Linux
professional certification exam.

Linux wannabe press releases flow from companies trying to ride on the
success of Linux stocks. Vitamins.com, for example, posts the following:
“Vitamins.com has further distinguished itself in the competitive Internet health
industry race by being one of the first to integrate the Linux Operating System,
produced by Red Hat, the leading developer and provider of open-source
software solutions.”

February 2000

The latest IDC report suggests that Linux now ranks as the “second-most-
popular operating system for server computers”, with 25% of the server
operating system sales in 1999. Windows NT is first with 38% and NetWare
ranks third with 19%. IDC previously predicted that Linux would get up to the
number two position—in 2002 or 2003. The revolution appears to be well
ahead of schedule.

VA Linux Systems acquisition of Andover.net in a high-profile purchase that
values Andover shares at 0.425 of VA's, or roughly $50/share. Andover.net is
the owner of the popular web sites Slashdot.org and Freshmeat.org.

LinuxMall.com and Frank Kaspar and Associates also have made plans to
merge. LinuxMall.com has been at the top of the retail side of Linux almost
since the very beginning; Kaspar is one of the largest distribution channels.

Red Hat wins InfoWorld's “Product of the Year” award for the fourth time in a
row.

http://Slashdot.org
http://freshmeat.org

March 2000

“The law in open code means that no actor can gain ultimate control over open-
source code. Even the kings can't get ultimate control over the code. For
example, if Linus Torvalds, father of the Linux kernel, tried to steer GNU/Linux
in a way that others in the community rejected, then others in the community
could always have removed the offending part and gone in a different way. This
threat constrains the kings; they can only lead where they know the people will
follow.” —“Innovation, Regulation, and the Internet” by Lawrence Lessig for The
American Prospect.

A new version of LILO is posted that is able to get past the 1024-cylinder boot
limit that has plagued PC systems for years.

The latest Netcraft survey shows Apache running on just over 60% of the Web.

Caldera Systems goes public after a short delay, on March 21. The stock, which
was offered at $14/share, began trading at $26 and closed at $29.44. It thus
registered a 110% gain on its first day.

“Caldera knows of no company that has built a profitable business based in
whole or in part on open-source software.” —Caldera SEC filing

Walnut Creek (the parent company for Slackware) and BSDi announce their
merger. Yahoo! will be taking an equity investment in the new company.

Motorola Computer Group announces the release of its HA Linux distribution.
This distribution is aimed at telecommunications applications that require very
high amounts of uptime; it includes hot-swap capability and is available for the
i386 and PowerPC architectures.

The Embedded Linux Consortium is announced. Its goal is “to amplify the
depth, breadth and speed of Linux adoption in the enormous embedded
computer market”. The initial leader will be Rick Lehrbaum, the man behind the
LinuxDevices.com and DesktopLinux.com web sites, among other things.

Ericsson announces its “Screen Phone HS210” product—a Linux-based
telephone with a touchscreen that can be used for e-mail, web browsing, etc.
Ericsson and Opera Software also announce that Ericsson's (Linux-based)
HS210 Screen Phone will incorporate the Opera web browser.

April 2000

Code is ruled to be speech. On April 4, 2000, the United States Court of Appeals
for the Sixth Circuit published its decision regarding Peter Junger's challenge to

http://LinuxDevices.com
http://DesktopLinux.com

the Export Administration Regulations that prevented him from posting
information on the Internet that contained cryptographic example code. Most
critical in the ruling: “Because computer source code is an expressive means for
the exchange of information and ideas about computer programming, we hold
that it is protected by the First Amendment.”

Andy Tanenbaum releases the the Minix operating system under the BSD
license. Had Minix been open source from the beginning, Linux may never have
happened.

May 2000

SuSE releases the first supported Linux distribution for the IBM S/390
mainframe.

“Approximately 140 distribution companies exist across the globe. We believe
all but the top five will be bought, will go out of business or will be relegated to
insignificance. Market-share leaders are currently defined around geographic
boundaries. Red Hat has the largest global brand recognition and leading North
American market share; SuSE leads in Europe, Turbolinux leads in Asia, and
Conectiva leads in South America.” —Keith Bachman, an analyst for WR
Hambrecht, predicting in The Red Herring

June 2000

Commercial considerations help prompt the relicensing of MySQL under the
GPL. Now the two freely available databases that are widely used in the Linux
and Free Software communities, PostgreSQL and MySQL, meet the Debian Free
Software Guidelines and the Open Source Guidelines. In addition, Progress
Software forms a new company, NuSphere, just for the purpose of supporting
MySQL.

July 2000

“In a world of NDA-bound business agreements, Debian is an open book. In a
world of mission statements, Debian has a social contract. At a time when
commercial distributors are striving to see how much proprietary software they
can pack into a box of Linux, Debian remains the bastion of software freedom
—living proof that you can have a fully functional and usable operating system
without needing any proprietary code.” —Evan Leibovitch, ZDNet

Sun announces that StarOffice is to be released under the GPL. The code is
going to be reworked, integrated with Bonobo and GTK, and released as a set
of reusable components. StarOffice will also be reworked to use a set of open
XML-based file formats.

Oracle's Linux-based internet appliance system hits the shelves. The “New
Internet Computer” (NIC) is the latest result of Larry Ellison's long personal
crusade to make non-Microsoft systems available to the world. It's aimed at
people who only want access to the Net; as such, it's essentially a $199 (without
monitor) X terminal.

Reports first appear that SCO may be purchased by Caldera. Later in 2000
Caldera and SCO announce their intent for Caldera International to be formed
from Caldera's existing operation and two of SCO's three divisions.

Ted Ts'o steps forward to become the new 2.4 status list maintainer. Alan Cox
was doing the job until he said that it was time to “find someone else to
maintain it”. Ted Ts'o responded to Linus' subsequent call for a new status list
maintainer.

August 2000

HP, Intel, IBM and NEC announce the “Open Source Development Lab”, which
makes large hardware available to Linux developers for benchmarking and
testing.

September 2000

“I'm a bastard. I have absolutely no clue why people can ever think otherwise.
Yet they do. People think I'm a nice guy, and the fact is that I'm a scheming,
conniving bastard who doesn't care for any hurt feelings or lost hours of work if
it just results in what I consider to be a better system.” —Linus Torvalds trying
to change his image.

The RSA patent expires, allowing for secure web transactions without
proprietary software.

Trolltech releases the Qt library under the GPL, putting a definitive end to a
long-running and unpleasant license flame war.

The CueCat fiasco begins. Digital Convergence attempts to shut down
programmers who have written Linux drivers for its CueCat bar code scanner.
The company has given out large numbers of these scanners for free, expecting
people to use them with its proprietary software and web site. The threats
cause the drivers to become marginally harder to find for a short period, after
which the company declares victory and moves on.

October 2000

Microsoft says that penguins can mutate in a European print ad that quickly
becomes famous.

December 2000

“I was dumbfounded to discover that installing Linux was easy. Why? Well, the
world has changed. No more do you have to understand everything about
Linux before you install it, downloading the many chunks of code necessary to
run a complete system and getting them all to work together. That was BSW—
before shrink-wrap. With companies such as Red Hat and Corel putting all the
software you need in a box, the pain is (nearly) gone.” —John Schwartz,
Washington Post

IBM announces plans to invest $1 billion in Linux in 2001.

January 2001

The long-awaited 2.4.0 kernel was released on January 4.

The US National Security Agency (NSA) releases SELinux under the GPL. SELinux
offers an additional layer of security checks in addition to the standard UNIX-
like permissions system.

March 2001

The Linux 2.5 kernel summit is held in San Jose, California; it is, perhaps, the
most complete gathering of Linux kernel hackers in history.

April 2001

IBM gets into trouble over its “Peace, Love and Linux” graffiti in several cities.

“Slackware has always made money (who else producing a commercial
distribution can say that?), but with BSDi we ended up strapped to a sinking
ship.” —Patrick Volkerding

May 2001

Sony's PlayStation Linux kit, shipped in Japan, sells out in eight minutes despite
a doubling of the available stock.

June 2001

Sharp announces its upcoming Linux PDA based on Lineo's Embedix system.

VA Linux Systems exits the hardware business, choosing to focus on
SourceForge instead. Later VA drops the word “Linux” from its name altogether,
relaunching as VA Software Corporation.

“In a press release issued Wednesday afternoon, VA Linux CEO Larry M.
Augustin called the shift in strategy a logical move. 'Our differentiating strength
has always been our software expertise', Augustin said”. —Wired. You only
thought VA was a hardware company.

July 2001

Free Dmitry! Dmitry Sklyarov is arrested in Las Vegas after Adobe complains
about the Advanced eBook Processor. The following month he is charged with
DMCA violations and conspiracy: the potential penalties add up to 25 years in
prison. Dmitry's defense is based on constitutional challenges to the DMCA, on
free speech and jurisdictional issues. Later in the year, charges are dropped,
conditional on one year of good behavior and testimony in the ElcomSoft trial.

“Although Adobe withdrew its support for the criminal complaint against
Dmitry Sklyarov, we respect the grand jury and federal government's decision
to prosecute the company, ElcomSoft, and as a law-abiding corporate citizen,
Adobe intends to cooperate fully with the government as required by law.” —
Adobe's position

November 2001

Sharp Electronics Corporation begins a special Linux developer prerelease of
the Zaurus PDA to attract free software developers to the hot new platform.

February 2002

Avaya, the former PBX and enterprise systems division of Lucent, announces
Linux-based PBX systems.

“So there are some—and I'd list myself among them—who believe that the
return to Earth is a good thing. There's nothing wrong with making a buck, but
Linux doesn't benefit from being elevated beyond reality on a shaky
foundation.” —Evan Leibovitch takes a look at the post-rush world of Linux.

What Others Have to Say about Linux Journal's 100th Issue

Archive Index Issue Table of Contents

 Advanced search

https://secure2.linuxjournal.com/ljarchive/LJ/100/6000s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/6000s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Supporting IPv6 on a Linux Server Node

Ibrahim Haddad

Issue #100, August 2002

This article provides a technical tutorial on setting up IPv6 on a Linux server and
connecting it to the IPv6 Internet.

The current version of the IP protocol, IPv4, has proved to be robust, easily
implemented, interoperable and has stood the test of scaling to the size of
today's Internet, most of which uses IPv4—now nearly 20 years old. IPv4 has
been remarkably resilient in spite of its age, but it is beginning to have
problems. The initial design of IPv4 did not take into consideration several
issues that are of great importance today, such as a large address space
providing a solution for the address crunch problem, mobility, security,
autoconfiguration and quality of service.

To address these concerns, the Internet Engineering Task Force (IETF) has
developed a suite of protocols and standards known as the IP version 6 (IPv6),
which incorporates many of the concepts and proposed methods for updating
IPv4. Some of the IPv6 features include a new header format, a larger address
space (128 bits), an efficient and hierarchical addressing and routing
infrastructure, the availability of stateless and stateful address security, built-in
security, better support of mobility and a new protocol for neighboring node
interaction. As a result, IPv6 is not only going to fix a number of problems in
IPv4, it also will add many improvements. IPv6 is expected to replace IPv4
gradually, with the two coexisting for a number of years during a transition
period.

Linux IPv6 Implementations

There are two main IPv6 implementations for Linux: the implementation that
comes as part of the Linux kernel and the USAGI (UniverSAl playGround for
IPv6) implementation. The USAGI Project works to deliver a production-quality
IPv6 protocol stack for Linux, tightly collaborating with the WIDE, KAME and
TAHI Projects. It is run by volunteers from various organizations contributing to

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the Linux and the IPv6 communities via the delivery of the IPv6 protocol stack.
Currently, there are many efforts in the different distributions teams, and
USAGI is trying to unify them so that there is one IPv6 implementation for all
Linux distributions.

For the purpose of this article, we use Linux kernel 2.4.5 from kernel.org. We
first show how to build a kernel with IPv6 support, then how to upgrade the
basic networking software to support IPv6 and finally, how to connect your
IPv6-enabled server to the IPv6 Internet using the services from the
www.freenet6.net Project.

Supporting IPv6 in the Linux Kernel

The first step is to download the Linux kernel from kernel.org and uncompress
it:

tar -xzf linux-2.4.5.tar.gz

You will have a directory called linux. You need to move this directory into /usr/
src and rename it linux-2.4.5 to reflect the kernel version. Next, you need to
create a link to the 2.4.5 source directory:

ln -s /usr/src/linux-2.4.5 /usr/src/linux

Having done that, you need to configure the new kernel to enable support for
IPv6:

cd /usr/src/linux
make xconfig (or menuconfig)

We need to enable two options in the kernel configuration. First, go to Code
Maturity Level and enable development/incomplete code/drivers:

"Prompt for development and/or incomplete
 code/drivers" YES

Figure 1. Enabling Support for Experimental Features

Then go to the Networking Options. There you will enable the IPv6 protocol:

IPv6 Protocol (EXPERIMENTAL) YES

http://kernel.org
http://www.freenet6.net
http://kernel.org

Figure 2. Linux Kernel IPv6 Configuration

This is all the configuration you need at the kernel level. Next, you should save
this configuration and exit by clicking on the Save and Exit button (see Figure 3).
This will create a .config file in /usr/src/linux, which is the kernel configuration
file. Now you are ready to compile the kernel by following these steps:

make clean
make dep
make bzImage

Figure 3. Saving the Configuration

The result will be a new kernel image created in /usr/src/linux/arch/i386/boot/.
If you added other features as modules you need to compile and install the
modules by applying:

make modules
make modules_install

At this point you need to copy the new IPv6-enabled boot image to /boot:

https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f3.large.jpg

cp /usr/src/linux/arch/i386/boot/bzImage
 /boot/bzImage.ipv6

and update your System.map file:
cp /usr/src/linux/System.map \
/boot/System.map-2.4.5-ipv6
ln -fs /boot/System.map-2.4.5-ipv6 /boot/System.map

The only remaining step is to update /etc/lilo.conf file to add an entry for the
new IPv6-enabled kernel. Edit the /etc/lilo.conf file and add a new entry as
follows:

image=/boot/bzImage.ipv6
label=linux_ipv6
root=/dev/hda1 # change this to reflect your own
 # partition
read-only

Then update the LILO configuration by applying
/sbin/lilo

This will add an entry called linux_ipv6 that will be presented at LILO at boot
time. You are now ready to reboot your server. When LILO comes up, choose to
boot linux_ipv6. Et voilà! Your system will boot with IPv6 support in the kernel.
Type ifconfig at the prompt to verify and see the outcome. It should show the
IPv6 local address ::1 in your loopback configuration (see Figure 4).

Figure 4. ifconfig Loopback

IPv6 Binaries and Tools

Once the kernel supports IPv6, you need to install some tools to test your setup
and to use IPv6 transport with other systems. First, you need the basic network
utilities to support IPv6 to be able to configure your interface, in addition to
some other IP utilities such as ping6, telnet6, etc., and to be able to do some
basic IPv6 testing.

There are three packages that provide these utilities: net-tools, iputils and the
NetKit utilities. The must-have packages are the first two; NetKit is optional. In
addition, if you want to have the ability to debug potential IPv6 network
problems that may arise, you need to have support for IPv6 in tcpdump and

libpcap. In the following sections, we cover the installation of all the above-
mentioned packages.

net-tools

net-tools is a collection of programs to control Linux's networking, which
includes commands such as arp, hostname (domainname, dnsdomainname,
nisdomainname), ifconfig, ipmaddr, iptunnel, netstat, rarp, route and
plipconfig. This package is available for download from
www.tazenda.demon.co.uk/phil/net-tools.

To install the package on your system first download the packages directly into
/usr/src. Then enter these commands separately:

cd /usr/src
tar xIvf net-tools-1.60.tar.bz2
cd net-tools-1.60
./configure.sh config.in

The configuration will ask a few questions that you need to answer to be able
to configure net-tools. It is suggested that you answer yes to the following
questions:

INET6 (IPv6) protocol family (HAVE_AFINET6) [n] y
SIT (IPv6-in-IPv4) support (HAVE_HWSIT) [n] y
Build iptunnel and ipmaddr (HAVE_IP_TOOLS) [n] y

Then, you need to compile and install net-tools:
make
make install

The binaries will be installed in /sbin and /bin, and you can start using them
assuming that you have rebooted into an IPv6-enabled kernel.

iputils

This package includes the following tools: ping, ping6, traceroute6, rdisc,
clockdiff, tftpd, tracepath, tracepath6 and arping. It may be that the installed IP
utilities on your system do not support IPv6. The first step is to check if the
currently installed version is IPv6-compliant by typing the following at the
command shell:

rpm -q --qf "%{NAME}-%{VERSION}\n" iputils

If the outcome is iputils-20000121 or newer, then you do not need to perform
the installation of the latest iputils package. Otherwise, you need to follow
these steps to install the utilities on your system. First, download the package
from ftp.inr.ac.ru/ip-routing. For our setup, we used iputils-ss001110.tar.gz.
Next, untar the package in /usr/src:

http://www.tazenda.demon.co.uk/phil/net-tools
ftp://ftp.inr.ac.ru/ip-routing

tar -xzf iputils-ss001110.tar.gz

Finally, compile iputils with make.

The package does not provide a make install. Therefore, you are free to place
the binaries in a directory of your choice. However, you need to make sure that
the old versions of the tools you have do not conflict with the newer versions in
your path. Save the new binaries in /usr/local/iputils/bin/. The package provides
man pages for every tool. You also need to move the new man pages into a
directory that man searches; to check which directories are in the man path,
type manpath.

NetKit Utilities

These utilities are basic tools to work with and test your new IPv6 configuration.
NetKit includes the following tools: ping, finger, telnet, rwho and their
respective dæmons. These are very useful utilities because we can compile
them with IPv6 support. The package is available for download from
freshmeat.net/projects/netkit. The version we tested was nkit-0.5.1.tar.gz.

Here are the steps you need to follow to install these utilities on your Linux
server. First, download the latest NetKit package from the referenced web site.
Then move the downloaded file to /usr/src. Unpack the package with:

tar -xzf nkit-0.5.1.tar.gz

Next, run ./configure. Compile with make clean and make, and copy the
binaries to /usr/local/bin:

cp telnet/telnet /usr/local/bin/telnet6
cp telnetd/in.telnetd /usr/local/sbin/in.telnetd6
cp finger/finger /usr/local/bin/finger6
cp ping/ping /usr/local/bin/ping6
cp fingerd/in.fingerd /usr/local/sbin/in.fingerd6

At this moment, you should have basic functionalities, as you can, for instance,
ping6 your local IPv6 loopback (Figure 5).

Figure 5. ping6 in Action

http://freshmeat.net/projects/netkit

Please note that if you are using Red Hat 7.x, you need to apply a patch to the
NetKit package. The patch is available from ftp.bieringer.de/pub/linux/IPv6/
netkit.

Optional Utilities

There are several optional utilities that you can install on your system that
extend their support for IPv6. For the purpose of this article we mention only
three packages: libpcap, tcpdump and xinetd.

libpcap and tcpdump

If you need to understand what is happening at the packet level of your IPv6
network/connection, you need to have IPv6 with libpcap and tcpdump. libpcap

is a system-independent interface for user-level packet capture that provides a
portable framework for low-level network monitoring. On the other hand,
tcpdump is a tool that provides network monitoring and data acquisition.

If you want these functionalities, you need to download the latest versions and
install them on your system. The versions we tested were tcpdump 3.6.2 and
libpcap 0.6.2. First, download the packages from www.tcpdump.org and move
them to /usr/src. Then unpack them with:

tar -xzf libpcap-0.6.2.tar.gz
tar -xzf tcpdump-3.6.2.tar.gz

After unpacking, you will have two directories, one for each package. Next, you
need to follow these steps for each package; however, you need to apply them
first to libpcap and then to tcpdump. First, run the configuration script while
enabling IPv6:

./configure --enable-ipv6

Then compile with make clean and make. Lastly, install the binaries with make

install.

After following these steps, you need to adjust your path to include the new
binaries that support IPv6. You also may want to edit /etc/profile and include /
usr/local/sbin and /usr/local/bin within your PATH variable, and reload /etc/
profile for the new changes to take effect:

source /etc/profile

xinetd with IPv6 Support

If you want to be able to telnet6 to your system, you need to compile xinetd
with inet6 support. Normally, the installed inetd dæmon isn't ready to handle

ftp://ftp.bieringer.de/pub/linux/IPv6/netkit
ftp://ftp.bieringer.de/pub/linux/IPv6/netkit
http://www.tcpdump.org

IPv6 addresses. Therefore, you need to upgrade to xinetd. To download the
latest version of xinetd go to synack.net/xinetd. Our setup was tested with
xinetd-2.1.8.8p3.tar.gz.

Download xinetd-2.1.8.8p3.tar.gz (or latest) into /usr/src and unpack it with:

tar -xzf xinetd-2.1.8.8p3.tar.gz

Next, run the configuration script:

./configure --with-inet6 --prefix=/usr/local/bin

The --prefix=/usr/local/bin is used to specify that the resulting binaries should
go under /usr/local/bin. Then compile and install:

make clean
make
make install

Next, you need to create a configuration file from your old inet.conf:
/usr/sbin/xconv.pl < /etc/inetd.conf > /etc/xinetd.conf

where /usr/sbin is the path to the xinetd executable.

As a side note, you need to make sure that in the xconv.pl script, the first line
contains the right path to the Perl binary to be able to execute.

Next, you need do some very minor changes in /etc/xinetd.conf to reflect the
usage of the telnet6d and tftp6d, instead of the usual IPv4 Telnet and TFTP
dæmons. Having done that, you will be set to Telnet and FTP to your system
over IPv6.

IPv6 Applications

There is a wide range of applications that support IPv6. However, we are going
to mention only one server application, the Apache web server. Apache is the
most popular web server on the Internet (source: Netcraft.com). The latest beta
release, Apache 2.0.16 beta, includes support for IPv6, which makes it a good
application for testing your IPv6 setup. If you download the latest version of the
Apache web server and install it on your system, you will be able to serve web
pages over IPv6.

Figure 6 presents a screenshot of the Mozilla browser when trying to access
“http://[::1], which is the IPv6 local loopback.

http://synack.net/xinetd
http://Netcraft.com

Figure 6. A Request for ::1

For your convenience, you may want to update /etc/hosts file to include:

::1 ip6-localhost ip6-localhost

Then, instead of using ::1, you can use ip6-localhost.

Don't forget to check the /etc/protocols. If the below-mentioned entries are not
there, you need to append them for IPv6-protocol support:

ipv6 41 IPv6 # IPv6
ipv6-route 43 IPv6-Route # Routing Header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment Header for IPv6
ipv6-crypt 50 IPv6-Crypt # Encryption Header
 # for IPv6
ipv6-auth 51 IPv6-Auth # Authentication Header
 # for IPv6
ipv6-icmp 58 IPv6-ICMP icmpv6 icmp6M # ICMP for
 # IPv6
ipv6-nonxt 59 IPv6-NoNxt # No Next Header for IPv6
ipv6-opts 60 IPv6-Opts # Destination Options
 # for IPv6

Connecting to the IPv6 Internet

Back in 1996 when the first IETF specifications for IPv6 were done, there was an
interest in having a test backbone for IPv6. During IETF-Montréal in 1996, the
6bone (IPv6 backbone) was born. It uses test (but still valid) addresses in the
3ffe::/16 range. At the beginning, most of the backbone was done using tunnels
over the current IPv4 Internet. This makes a virtual IPv6 network over the IPv4
Internet. Nowadays, the 6bone is made of both native links and tunnel links.

The 6bone is there for testing, so there is no service-level agreement between
the organizations, but this doesn't mean it is not reliable or valid. Any traffic
from and to 3ffe::/16 is valid without any limitation.

In July 1999, the three regional registries, ARIN for Americas, RIPE for Europe
and Africa and APNIC for Asia, started to give regular nontest addresses to
providers, starting in the 2001::/16 range. All the sites that have addresses from
that range form the production IPv6 Internet.

To connect to either the 6bone or the IPv6 Internet, you need (as in IPv4) a
provider that offers the service. If you can't find one directly, or if your current
one does not offer the service, then the easy solution is to make a tunnel to a
provider or a site that is willing to offer you the transit service.

As in the early days of the Internet, a project aimed to help people start using
IPv6 is offering a free and automated tunnel service that can connect any
individual or organization to the IPv6 Internet. The project is called Freenet6.net
and is run by Viagénie, a consulting firm, as a free, volunteer and run-on-a-best-
effort basis. The service is very popular in the community because of the easy
and fast access to the Internet.

Freenet6 is modeled from the tunnel broker (RFC 3053) where an IPv6-over-
IPv4 tunnel is established between a node and the tunnel broker. Freenet6 is
an enhanced version where the node is using a tunnel setup protocol (TSP) to
negotiate the establishment of the tunnel with the server. The client node may
be a host or a router. The TSP server Freenet6 provides not only tunnels but
also a large address space to any user of the service. The address space
provided is a /48, which gives (16 bits) 65,536 subnets, each may have up to 264
nodes (64 bits). This is much more than the entire current Internet! This
address space is assigned to the user and will survive over a change in the IPv4
address of the client node. This enables any user or organization to have the
freedom of billions of addresses for servers and services; this was not easy to
do with NAT in IPv4.

An IPv6-over-IPv4 tunnel is made with both end points configuring the IPv4 and
the IPv6 address of the other end point. When one of the end points changes
its IPv4 address, then both end points of the tunnel need to change their
configuration accordingly. This is especially cumbersome when the IPv4 node is
doing dial-up or changing addresses often. TSP, as implemented in the
Freenet6 service, can be configured to take care of this. Each time the tunnel
client changes its IPv4 address, for example, at boot time with DHCP service,
the TSP client sends updated and authenticated information to the server, so
the tunnel remains active. Supported client nodes of the Freenet6 service are

Linux, FreeBSD, OpenBSD, NetBSD, Windows, Solaris and Cisco. Figure 7
illustrates the basic architecture of Freenet6.

Figure 7. Freenet6 Architecture with One Host

To use the Freenet6 service after installing IPv6 on Linux, you have to take the
following steps. First, go to www.freenet6.net and register a user name. Then
download the TSP client for Linux. Follow the instructions for compiling and
installing it. Next, configure the tspc.conf file provided. Add your user name and
password. Then start the tspc client:

tspc -vf tspc.conf

You may want to put the tspc client command in your boot sequence so that it
will automatically re-enable the tunnel at boot time, even if your IPv4 address
changes.

Freenet6 can give you either one IPv6 address if you have a host, or it can give
you a full /48 if you have a router. Freenet6 will configure Linux to fit the role.

In the router case, you will receive a /48, and the first subnet on your router will
be configured for router advertisements. This means that hosts on that subnet
will receive the prefix and autoconfigure themselves, as shown in Figure 8.

Figure 8. Freenet6 Architecture with a Router and Multiple Hosts

There are many ways to connect to the IPv6 Internet. Freenet6, together with
the TSP protocol, enables an easy IPv6-tunneled connection with a permanent
address space so that if you change your IPv4 address, the IPv6 addresses and
connection remains stable.

http://www.freenet6.net
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763f8.large.jpg

Conclusion

As part of our activities in the Open Architecture Research at Ericsson Research
Canada, we are conducting several IPv6-related projects, such as supporting
IPv6 on our telecom-grade server nodes, porting application servers to work
with IPv6 and establishing research projects in different IPv6 areas.

One of the interesting activities we carried out was to experiment with the
Linux IPv6 implementations currently available and present recommendations
to decide which implementation to adopt for our Linux processors. The
recommendations were based on IPv6-implementation characteristics, such as
its development speed, its compliance to the standards and its performance vs.
other implementations. The results were presented during the Linux
Symposium in Ottawa, Canada, June 26-29 (www.linuxsymposium.org/2002/
view_txt.php?text=abstract&talk=93).

For 2002, we continue to support IPv6 on our Linux clusters. Our current efforts
are in the direction of supporting IPv6 on the SIP and SCTP implementations for
Linux, as well as building an IPv6 benchmarking environment capable of testing
the performance and scalability of platforms and applications running over
IPv6.

In closing, it's important to know that one of the key advantages of IPv6 is
addresses. Any individual can receive as many addresses as the current IPv4
address space. This empowers users with complete freedom to deploy servers
and services without having to take care of NAT problems and limited address
space. Welcome to the freedom of deploying services on the Internet!

Acknowledgements

We'd like to thank Ericsson Open Architecture Research for approving the
publication of this article, Canarie, Inc. (www.canarie.ca) for funding part of the
Freenet6 Project and David Gordon (David.Gordon@Ericsson.ca) for his help in
the ECUR Lab setting up IPv6 nodes and editing and reviewing this article.

Resources

Ibrahim Haddad (Ibrahim.Haddad@Ericsson.com) currently is a researcher at
the Ericsson Corporate Research Unit in Montréal, Canada. He is primarily
involved in researching carrier-class server nodes for real-time, all-IP networks
and represents Ericsson on the Technical Groups of the Open Source
Development Lab. Marc Blanchet works at Viagénie, a consulting firm
specialized in IP engineering, IPv6 and network security. He has been involved
in IPv6 since 1995 and has written many IETF documents on IPv6. He also wrote
Migrating to IPv6, published by Wiley.

http://www.linuxsymposium.org/2002/view_txt.php?text=abstract&talk=93
http://www.linuxsymposium.org/2002/view_txt.php?text=abstract&talk=93
http://www.canarie.ca
mailto:David.Gordon@Ericsson.ca
https://secure2.linuxjournal.com/ljarchive/LJ/100/4763s1.html
mailto:Ibrahim.Haddad@Ericsson.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Bare Metal Recovery, Revisited

Charles Curley

Issue #100, August 2002

Charles describes the additions he made to the scripts for his backup and
recovery suite.

Imagine your disk drive has just become a very expensive hockey puck. Imagine
you have had a fire, and your computer case now looks like something Salvador
Dali would like to paint. Now what?

That's the way I started an article on this subject in the November 2000 issue of
Linux Journal. The article described a process for backing up a computer and
subsequently restoring it to the bare metal. The article described a suite of
scripts that were part of both the backup process and the recovery process.
Readers can find the article at www.linuxjournal.com/article/4175.

Since then I have added some scripts to the suite. Most of the new scripts are
designed for network backups and take advantage of Secure Shell (SSH). (For
more information on SSH, see Mick Bauer's “The 101 Uses of OpenSSH” in the
January and February 2001 issues of LJ.) I've also made some changes to the
scripts introduced in the original article. The suite of revised scripts is available
at my home page (see Resources).

The Flaw

The biggest problem with my November 2000 article and the process it
described is that the process required a lot of typing at the beginning of the
recovery process. You have to enter partition boundaries and other data into
fdisk manually, then check the results against your printout. (Printout!? for
Murphy's sake!) Then you manually create the appropriate filesystems for each
partition. Then you get to mount them, again manually.

This is a lot of typing. I don't know how many times I did test backups and
restores on my test computer while I was writing the article. More than I ever

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/079/4175.html

want to do again, that's for sure. It's also error prone. After a while all those
numbers start to blur together.

The obvious solution is a script or two. What we need is a script that will restore
the partition information to a hard drive, then build the filesystems and mount
them so that you can run the first stage restoration.

My first pass at this script is the script make.partitions, which is available in the
tarball of scripts on my home page. It has two problems: first, it does not
rebuild the partitions, so you still have to run fdisk manually; and second, it has
to be created by hand for each computer. Add, delete, reformat or otherwise
modify a partition, and you have to edit the script. That's not good enough. The
script, which is GPLed, should look somewhat like Listing 1.

Listing 1. make.dev.hda

A Script-Writing Script

The second solution is a lot smarter. Why not automate the process? We use
gcc to compile gcc. Heck, you can use gcc to compile Perl. Why not a script that
creates the script that make.partitions should be? Why not a script-writing
script?

make.fdisk parses the output from fdisk -l and mount -l and creates a new
script for restoring a given hard drive.

Using Redirection

The first problem we face is one I mentioned in the original article: fdisk does
not export partition information in a manner that allows it to be re-imported
later on. While other versions of fdisk do allow exporting, tomsrtbt (the floppy-
based distribution I recommend for bare metal restore) comes with fdisk, and I
don't want to rebuild the tomsrtbt disk. We can handle this with something all
well-behaved Linux programs have: I/O redirection. Given a program, foo and a
file of commands for foo called bar, we can feed the commands to foo by
redirecting foo's input from the keyboard to bar, like this:

foo < bar

So what we want to be able to do is:

fdisk /dev/x < dev.x

where x is the name of the hard drive to be rebuilt.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5484l1.html

make.fdisk creates two files. One is an executable script, called make.dev.x, like
Listing 1. The other, dev.x, contains the commands necessary for fdisk to build
the partitions. You specify which hard drive you want to build scripts for (and so
the filenames) by naming the associated device file as the argument to
make.fdisk. For example, on a typical IDE system,

make.fdisk /dev/hda

spits out the make.dev.hda script and the input file for fdisk, dev.hda.

How It Works

As you look at the script make.fdisk shown in Listing 2 [available at
ftp.linuxjournal.com/pub/lj/listings/issue100/5484.tgz], keep in mind what
happens at what time. Like C source code, some things happen later on, at
runtime. Others happen at the time the program is compiled, like evaluation of
defines and inclusion of header files.

On examining make.fdisk, the first thing we see is that it is a Perl script. Next is
a brief description of what the script does. This is followed by a timestamp and
two copyright statements. Then we see the usual announcement that the code
is free software and distributed under the General Public License. Next is a
detailed description of the problem with fdisk we've already seen—and the
solution. It is good coding practice to document a program in this manner; it
makes the program almost self-documenting.

Now we get to actual Perl code. The subroutine cut2fmt takes a series of
column numbers and calculates a format string for later use with unpack. Right
after the subroutine we use it to create a format string to unpack the output
from fdisk.

After that is a series of definitions of the columns in fdisk's output. With these,
we can index into the array created with unpack by name rather than by
column number. This should make the script easier to read and more
maintainable.

The directory where the rebuilt hard drive will be mounted is named $target so
that the first stage restore can find it. Make sure this agrees with the definition
of $target in your copy of the script restore.metadata.

Next, the code massages the device name to produce the filenames where we
will send our output. Then we define the path to the directory where we will
place the output files.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5484.tgz

Disk Labels

Labels are tools that Linux uses to abstract partitions. The problem with using
device filenames in fstab is that if you add or remove a hard drive you may
affect which device file another partition shows up under. Labels travel with the
partition, so that with mounting by label you always get the correct partition.
They are a problem for us because tomsrtbt doesn't handle labels.

The next section of code executes mount with a command-line switch to make
it show the labels. If there is a label in any given line, we save the label and the
device filename in a hash. That way, later on when we make the filesystem in
the partition, we can assign the label. Also, we need to mount the partition by a
device filename so that we can restore to it. We make a hash mapping from
device filename to mountpoint so that later on we can build the mountpoint
directories and mount the partitions.

Next is a typical Perl command to spawn a process and put the results into a
filehandle, in this case FDISK. It is complete with error checking. Then we open
our output file, which will eventually be redirected as input to fdisk.

Now we begin a loop to parse each line of the output from the system call to
fdisk. We are interested in any line that has the device in it. If we find one, we
massage it a bit, unpack it into the array @_ and further massage the array
members.

Disk Partitions

If a partition number is less than five, it is either a primary partition, meaning it
can have a filesystem in it, or an extended partition, meaning it can have a
number of logical partitions in it. In either case, we write the commands to
build the partition to the output file. If it is a Linux swap partition, we have to
tell fdisk to change its partition type.

If we see a primary partition that is either FAT (but, for now, not FAT32), Linux
or Linux swap, we append the appropriate command to the $format to make
the partition a FAT, ext2 filesystem or a swap partition. Later on, we'll use
$format to create the output script.

A partition number of five or greater only can be a logical partition, that is, one
contained within an extended partition. As far as we are concerned, these are
either Linux ext3fs, Linux swap partitions, FAT or anything else. As above,
appropriate fdisk commands are sent to the output file and appropriate
commands to create filesystems are appended to $format.

We look to see if there is a label for each ext2 partition. If there is, we use a
command that will recreate that label on the new partition, otherwise we use
the same command without a label.

Bad-Block Checking

You will notice that there are two commands to make each filesystem, with one
commented out. The one commented out makes the filesystem with no bad-
block checking. If I were installing to a brand-new hard drive, I would consider
using this. The other does bad-block checking. I prefer to check for bad blocks
when reusing a hard drive. The bad-block check is a simple read-only test,
which is reasonable most of the time. You can add a write test, which is much
more thorough but takes longer, by adding -w to the command-line options for
bad blocks. The write test is destructive, but since you will be building a new
filesystem in the partition, you don't care.

At the end of our line-parsing loop, if any partition is marked “bootable”
(typically a MS-DOS, Windows or Windows NT partition because LILO ignores
the bootable flag), we send the commands to make it bootable to the
command file.

The last thing we do for the command file is send a “v”, which will have fdisk
verify the newly built partition table. Then we send a “w”, which will cause fdisk
to write the partition table to the hard drive and then exit. We then close our
two files.

Next, we open the file that will become our script and send an appropriate
header to the script, similar to the header for this script. The first thing the
script actually will do is use dd to write zeros over the first 1,024 bytes of the
hard drive. This will clobber any existing master boot record (MBR) so that we
don't have to worry about deleting partitions before creating the new ones.

The next step is to create the command that will partition the hard drive, using
the command file we've already created. Then the code walks through the hash
of mountpoints, creating a comment line, a command to create the directory
and then a command to mount the device filename to the directory.

We have to mount starting at the root partition so that mountpoints are
created in the correct partition. For example, suppose /usr/local is on its own
partition; we have to mount /usr before we build /usr/local. To ensure that is
done, we sort the keys of the hash and process the hash in that order.

The last thing we do is change the mode of the files we've just created. Since
paranoids live longer, we disallow anyone but root from even reading the
script, and make it executable.

Using the Script

The script make.fdisk should be run as a normal part of preparing for backing
up for bare metal recovery. Run it before you run save.metadata so that the
output files are saved to the ZIP drive. Better yet, have save.metadata call it,
once for each hard drive.

When you are restoring, run make.dev.x for each hard drive you have. Again,
this can be automated by including it in restore.metadata.

There are other things you can do with this script. Suppose you want to add a
new partition. Use the bare metal backup process to save a hard drive, then
edit the dev.x command file to change the partition definitions and restore
using the edited file. I successfully added a 30MB Mess-DOS partition to my test
computer with this technique.

Improvements

Some improvements that you can tackle if you like include having make.fdisk
process several hard drives, all indicated on the command line; adding error
checking for the argument(s) to make.fdisk, having it produce one script that
builds all the hard drives, extending the FAT filesystem support (for one thing,
right now the code ignores FAT32); and extending the code to support other
filesystems.

Resources

Charles Curley (w3.trib.com/~ccurley) is a freelance software engineer, writer
and occasional cowpoke in the wilds of Wyoming. Occasionally, while he's in his
backyard working on an article, some deer wander through and he loses his
train of thought.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5484s1.html
http://w3.trib.com/~ccurley
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux Router

Kaleem Anwar

Muhammad Amir

Ahmad Saeed

Muhammad Imran

Issue #100, August 2002

The performance of the Linux router makes it an attractive alternative when
concerned with economizing.

Routers are amongst the most crucial components of the Internet, as each bit
of information on the Internet passes through many routers. Most of the
routers used on the Internet are made by Cisco. Although these have good
performance, they come at a high price.

In situations where we need to economize, the Linux router is an attractive
alternative. When used as a simple gateway for a LAN, it can be almost free. All
that is needed is an old 486DX machine with more than one network interface.
A monitor is not always necessary. If used for a sophisticated application you
will need a Pentium PI 200MHz MMX, which is costs more but is still three or
four times cheaper than a commercial router with comparable functionality.

If one has a small lab with several LANs and wishes to set up a reliable, as well
as secure, connection to the Internet, the cost of a commercial router may not
be justifiable. The most economical solution in this case is to use a low-cost
processor running the LRP (Linux Router Project, www.linuxrouter.org)
distribution, which is a networking-centric, micro-distribution of Linux.

LRP is so small that it can safely boot from a single 1.44MB floppy disk. It makes
the building and maintenance of firewall, routers, switches, hubs, and so on,
cheap and straightforward.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxrouter.org

In this article we show how to set up a Linux router for two to four LANs and
test its performance under different conditions. All of the work described here
was done on Intel PIIIs running at 733MHz. For comparison we also used
Pentium Is and IIs. Here we present the results of our investigation into the
performance of the Linux router and compare it with a commercial router.

Setting Up a Linux Router

The most common function of the Linux router is a connection between two
networks. Typically, this would be a LAN and the Internet. For our experiments,
given the unavailability of a connection to the Internet fast enough to stress the
router sufficiently, we used a server to simulate the Internet.

For performance measurements, we set up a simple router configuration as
follows:

• Download a copy of the idiot image (lrp 2.9.8). See the Sidebar “Which
Disk Image to Use” for details.

• Extract the image to a floppy disk (1.44MB/1.68MB super-formatted) and
make it bootable. The best way to do so is to use WinImage
(www.winimage.com).

• Get the kernel module for the Ethernet card you are using. We used
RealTek Ethernet cards with the RTL8139 chipset, so the module we used
was rtl8139.o. Add this to your kernel. Your Linux router is now ready for
its configuration. See the Sidebar “Adding Kernel Modules for Ethernet
Cards” for details.

• Boot from your LRP disk and open the network.conf file (located in /etc/
network.conf). Now modify it so that it looks like Listing 1 [available at
ftp.linuxjournal.com/pub/lj/listings/issue100/5826.tgz]. Appropriate
comments are there for modifications.

• Save the changes and back them up. Reboot.

The configuration of the Linux router is now complete. Now we'll describe its
performance in different configurations. Because we are not using dynamic
routing, we will define static routes in the following experiments according to
the configuration of the experiment. Note: after you are done configuring the
Linux router, write-protect the floppy disk you are using.

Performance of Linux Router

The test setup in our computer lab uses a 100Base-T Ethernet. The NICs and
switching hubs are 100Base-T. All platforms are running Linux 2.2 kernels, and
the Linux router is the default gateway for all of them. Performance is

http://www.winimage.com
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5826.tgz

measured on different LRP boxes, such as PI 133MHz, PI 200MHz and PIII
733MHz.

Bandwidth Measurement

The first configuration uses one client and one server. We connected the server
at the first NIC on the LRP box (eth0) and the client at the second NIC (eth1)
through cross-UTP 100Mb cables. Then we set the ipchains rules on the Linux
router for forwarding the traffic between client and server by issuing the
following command:

ipchains -I forward -j ACCEPT -s 192.168.1.0/24
-d 192.168.0.0/24 -b

We measured the bandwidth of the Linux router when there was traffic flow
between the server and the client. See Table 1 for the measurements for the
different LRP boxes.

Figure 1. Setup Number One for Measurement of Bandwidth of LRP Box

Table 1. Bandwidth Measurement Results

In this case, the measurements for the Pentium I are misleading, as the
bottleneck is the 90Mbps practical limit of 100Base-T Ethernet and not the
capacity of the router.

Configuration two was done with one server and multiple clients. We connected
a server on the first NIC of the LRP box (eth0) and three LANs through different
hubs to the other three NICs respectively. The setup is depicted in Figure 2. The
ipchains rules for this setup would look like:

ipchains -I forward -j ACCEPT -s 192.168.0.0/24
-d 192.168.1.0/24 -b
ipchains -I forward -j ACCEPT -s 192.168.0.0/24
-d 192.168.2.0/24 -b
ipchains -I forward -j ACCEPT -s 192.168.0.0/24
-d 192.168.3.0/24 -b
ipchains -I forward -j ACCEPT -s 192.168.1.0/24
-d 192.168.2.0/24 -b
ipchains -I forward -j ACCEPT -s 192.168.1.0/24
-d 192.168.3.0/24 -b

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826t1.html

ipchains -I forward -j ACCEPT -s 192.168.2.0/24
-d 192.168.3.0/24 -b

You can write a script to run these rules eliminating the need to enter them at
the command prompt every time you boot your LRP box. It should be placed in
the root directory so that the user is able to run all the rules by just entering ./
filename. We measured the bandwidth of the router when there was traffic
between the server and more than one client (clients may be from the same or
different LANs).

Figure 2. Setup Number Two for Measurement of Bandwidth of LRP Box

The graph in Figure 3 shows the performance of LRP while routing the traffic
between the server and the clients. From this graph we conclude that a PI
133MHz-based Linux router is sustaining a bandwidth of about 51Mbps, and a
PI 200MHz-based Linux router is sustaining a bandwidth of about 82Mbps. The
measured bandwidth between two platforms that are on the same network
segment (say both are at internal LAN1) was found to be equal to 90Mbps. In
this case, the router is not involved in the communication. This is direct
communication between two computers on 100Base-T Ethernet, start topology,
so Ethernet has a practical limit of 90Mbps. The bandwidth of the PIII-based
Linux router cannot be calculated due to the limitation of the physical medium
of transmission.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f3.large.jpg

Figure 3. Bandwidth Measurement of Linux Router

For the third configuration we set up multiple servers and multiple clients
(cross-pinging). In this test setup we used two servers connected on eth0 and
eth2 of the LRP box.

Figure 4. Setup for Cross-Pinging

A slight reduction (1-2% only) in the bandwidth of the Linux router was
observed when there was cross-pinging of packets between server 1 and client
1 and server 2 and client 2, simultaneously.

Stability

The Linux router is very stable in its operation. We have run it for long periods,
and it showed a very stable performance over the entire length of time. The

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f4.large.jpg

graphs in Figures 5 and 6 show that the bandwidth of the Linux router is fairly
constant with a great increase in the amount of data.

Figure 5. Effect of Increase in Data on Bandwidth of Linux Router

Figure 6. Variation in Bandwidth of LRP with Increasing Time

The write-protected medium for booting off the Linux router gives it increased
security from crackers. Once booted, it runs exclusively off RAM. You may safely

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f6.large.jpg

take your floppy out of the floppy drive and put it in a secure place until it's
needed again. Also, a single floppy can be used to boot many identical Linux
routers with a runtime change in configuration.

Easy to Handle

The Linux router is easy to handle and configure. It does not require any special
care for its use other than that required for a normal PC. If there is a problem,
configuring it only takes a few minutes. Moreover, it is basically software on a
floppy disk; if your LRP box gets damaged because of power fluctuations (a
common problem in the third world), you can instantly convert another
available PC into your router by adding NICs from the corrupted LRP (if they are
not corrupted) and boot it off the floppy disk. No configuration will be required
for this router at all, except the runtime configuration. You can imagine what a
great advantage this is—think of what would happen if your Cisco router were
to be corrupted.

Comparison with a Commercial Router

The following is a comparison of the Linux router with the Cisco 2620 router
available in our laboratory.

The cost of building a good Linux router (based on a Pentium I, 200MHz MMX)
with 1FDD, 32MB of RAM is less than $100 US. (It may be nearly free if you use
the minimum required hardware, i.e., a 486DX with 16MB RAM.) A monitor is
not necessarily required. You can use a borrowed monitor temporarily at
configuration time or configure via a remote serial connection (if you include
support for that through the serial.lrp package). On the other hand, the cost of
the Cisco 2620 with a 50MHz Motorola Processor, 16MB Flash RAM and 40MB
DRAM is more than $3,500 US.

Although power consumption here is not of great concern, in most applications
it is notable that the Linux router (running on PI 200MHz, MMX) consumes less
than 30W of power, while Cisco 2600 series routers consume 75W.

You can add as many NICs in the Linux router as you wish (limited by the
number of slots on the main board). In Cisco 2600 there is only one Fast
Ethernet card available.

The modularity of the Linux router is matchless. Its packaging system allows
easy removal and addition of features. You can add/remove packages, even at
runtime, using the lrpkg command. You need to shut down the Linux router to
add a module only if it requires some additional hardware. However, the kernel
module for the hardware can be installed at runtime using insmod. The design
of the Cisco router is not as modular.

For the Linux router there are a large variety of hardware and software
products available in the open market as it has the complete structure of the
ordinary Linux operating system. You can use the product of any manufacturer
that has support for the Linux router. Cisco routers, on the other hand, are
limited in this respect. Usually only Cisco products are used with Cisco routers.

Having Linux as the operating system on your router gives you the extra
advantage that you can build your own packages according to your needs using
shell scripting. You also can get a lot of help from the available literature for
Linux. Cisco routers have their own specific operating system called Internet
Operating System. The Cisco 2620 uses IOS release 12.1. Although it is
developed on a regular basis, you can use only those features that are available
in the specific IOS release used on your specific router.

Like Cisco routers, the Linux router also supports the multiprotocol feature. It
has support for RIP, BGP, OSPF and many more that are added through
packages.

Services such as Ethernet router, firewall, DNS and ISDN may be initialized on a
Linux router. However, initializing services like DNS (which is highly CPU-bound)
will degrade its performance. It is better to use a separate machine as a DNS
server. The Cisco router has multiservice integration of voice, data and video.
As with Cisco routers, IP masquerading, port translation, load balancing,
transparent proxy and interface alias may all be implemented on a Linux
router.

Cisco routers support IPX, Token Ring, VLAN, VPN, Apple Talk and DDR for
advance routing. The Linux router also can support these features through
proper packages. Although to do so, some expertise in Linux and some
additional hardware are required, which will increase the cost of Linux router,
but it still will be much less than that of a Cisco router.

Depending upon the model and series of the Cisco router, it has a limited
number of WAN slots. In the 2620 there are two WIC (WAN Interface Cards)
slots, one network module and one advance integrated mode slot. The two-
port serial WAN card has a asynchronous speed of 115.2Kbps, and
synchronous speed equals 2.048Mbps. Port 1 supports only synchronous
mode. The Linux router also has support for WAN interface cards. Sangoma
WICs (www.sangoma.com), which have a synchronous data rate of 8Mbps, are
quite popular among LRP users. With these cards you can combine many LRP
boxes. However, the disadvantage is that the cost of the LRP box increases—
this card costs about $400 US.

http://www.sangoma.com

Conclusion

The bandwidth of a 133MHz Pentium I-based Linux router is about 51Mbps and
that of a 200MHz Pentium I-based Linux router is 82.5Mbps. The performance
of the Linux router on a 733MHz PIII is so high (90Mbps) that it saturates the
100MHz Ethernet. We also studied the effect of RAM on routing. In this case it
turned out that there is no effect on routing performance with an increase in
RAM. However, by increasing RAM you can set up larger RAM drives that you
may need if your routing table gets quite large.

We have explored the performance of Linux router, its stability, cost, highly
modular design, low power consumption, and so on. More work on the Linux
router is underway to improve its routing performance. For a small office or
laboratory, where the pursuit of cost-savings is a major consideration, the Linux
router is the ideal solution. A typical configuration for a small business would
be as shown in Figure 7.

Figure 7. Typical Configuration for a Small Business

Acknowledgements

This work was performed in the Computer Communications Laboratory and
the Digital Computers Laboratory at the Department of Electrical Engineering,
University of Engineering & Technology, Lahore, Pakistan, under the
supervision of Professor Shahid H. Bokhari.

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826f7.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826s1.html

Which Disk Image to Use

Adding Kernel Modules for Ethernet Cards

Kaleem Anwar (kaleem_002@yahoo.com) is graduating in Electrical Engineering
with a specialization in Computer Engineering from the Department of
Electrical Engineering, University of Engineering and Technology Lahore,
Pakistan. His fields of interest include Linux, Java, control systems, computer
networks, algorithm design and digital signal processing.

Muhammad Amir (amirsher03@hotmail.com) is graduating in Electrical
Engineering with a specialization in Computer Engineering from the
Department of Electrical Engineering, University of Engineering and Technology
Lahore, Pakistan. His fields of interest include Linux, Java, control systems,
computer networks, algorithm design and digital signal processing.

Ahmad Saeed (electri17@yahoo.com) is graduating in Electrical Engineering
with a specialization in Computer Engineering from the Department of
Electrical Engineering, University of Engineering and Technology Lahore,
Pakistan. His fields of interest include Linux, Java, control systems, computer
networks, algorithm design and digital signal processing.

Muhammad Imran (imran_uet@hotmail.com) is graduating in Electrical
Engineering with a specialization in Computer Engineering from the
Department of Electrical Engineering, University of Engineering and Technology
Lahore, Pakistan. His fields of interest include Linux, Java, control systems,
computer networks, algorithm design and digital signal processing.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5826s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5826s3.html
mailto:kaleem_002@yahoo.com
mailto:amirsher03@hotmail.com
mailto:electri17@yahoo.com
mailto:imran_uet@hotmail.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Beowulf Evolution

Glen Otero Ferri

Issue #100, August 2002

Second-generation Beowulf clusters offer single-process I/O space, thin slave
nodes, GUI utilities and more for adaptability and manageability.

Imagine, for a moment, if you will, driving your car into a full-service gas station
—a near anachronism—pulling up to the attendant and saying, “Fill'er up, check
the oil and wipers, and...give me 20 more horsepower, would you?” The
attendant, not phased by the request, looks at you and says, “Would you like
four-wheel drive with that? I hear it might snow tonight.” You think for a
moment and respond positively—four-wheel drive would be good to have.

If only automobiles, and Beowulf clusters, were so adaptable. Yet, the single
most important distinguishing feature of Beowulf 2 technology is adaptability—
the ability to add more computing power to meet changing needs. To
understand and appreciate how Beowulf technology has become so adaptable,
an understanding of Beowulf 1 is in order.

The Roots of Beowulf

As we all know by now, the original concept for Beowulf clusters was conceived
by Donald Becker while he was at NASA Goddard in 1994. The premise was that
commodity computing parts could be used, in parallel, to produce an order of
magnitude leap in computing price/performance for a certain class of
problems. The proof of concept was the first Beowulf cluster, Wiglaf, which was
operational in late 1994. Wiglaf was a 16-processor system with 66MHz Intel
80486 processors that were later replaced with 100MHz DX4s, achieving a
sustained performance of 74Mflops/s (74 million floating-point operations per
second). Three years later, Becker and the CESDIS (Center of Excellence in
Space Data and Information Services) team won the prestigious Gordon Bell
award. The award was given for a cluster of Pentium Pros that were assembled
for SC'96 (the 1996 SuperComputing Conference) that achieved 2.1Gflops/s (2.1

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

billion floating-point operations per second). The software developed at
Goddard was in wide use by then at many national labs and universities.

First-Generation Beowulf

The first generation of Beowulf clusters had the following characteristics:
commodity hardware, open-source operating systems such as Linux or
FreeBSD and dedicated compute nodes residing on a private network. In
addition, all of the nodes possessed a full operating system installation, and
there was individual process space on each node.

These first-generation Beowulfs ran software to support a message-passing
interface, either PVM (parallel virtual machine) or MPI (message-passing
interface). Message-passing typically is how slave nodes in a high-performance
computing (HPC) cluster environment exchange information.

Some common problems plagued the first-generation Beowulf clusters, largely
because the system management tools to control the new clusters did not scale
well because they were more platform- or operating-specific than the parallel
programming software. After all, Beowulf is all about running high-performance
parallel jobs, and far less attention went into writing robust, portable system
administration code. The following types of problems hampered early
Beowulfs:

• Early Beowulfs were difficult to install. There was either the labor-
intensive, install-each-node-manually method, which was error-prone and
subject to typos, or the more sophisticated install-all-the-nodes-over-the-
network method using PXE/TFTP/NFS/DHCP—clearly getting all one's
acronyms properly configured and running all at once is a feat in itself.

• Once installed, Beowulfs were hard to manage. If you think about a semi-
large cluster with dozens or hundreds of nodes, what happens when the
new Linux kernel comes out, like the 2.4 kernel optimized for SMP? To run
a new kernel on a slave node, you have to install the kernel in the proper
space and tell LILO (or your favorite boot loader) all about it, dozens or
hundreds of times. To facilitate node updates the r commands, such as
rsh and rcp, were employed. The r commands, however, require user
account management accessibility on the slave nodes and open a
plethora of security holes.

• It was hard to adapt the cluster: adding new computing power in the form
of more slave nodes required fervent prayers to the Norse gods. To add a
node, you had to install the operating system, update all the configuration
files (a lot of twisty little files, all alike), update the user space on the nodes
and, of course, all the HPC code that had configuration requirements of its
own—you do want PBS to know about the new node, don't you?.

• It didn't look and feel like a computer; it felt like a lot of little independent
nodes off doing their own thing, sometimes playing together nicely long
enough to complete a parallel programming job.

In short, for all the progress made in harnessing the power of commodity
hardware, there was still much work to be done in making Beowulf 1 an
industrial-strength computing appliance. Over the last year or so, the Rocks and
OSCAR clustering software distributions have developed into the epitome of
Beowulf 1 implementations [see “The Beowulf State of Mind”, LJ May 2002, and
“The OSCAR Revolution”, LJ June 2002]. But if Beowulf commodity computing
was to become more sophisticated and simpler to use, it was going to require
extreme Linux engineering. Enter Beowulf 2, the next generation of Beowulf.

Second-Generation Beowulf

The hallmark of second-generation Beowulf is that the most error-prone
components have been eliminated, making the new design far simpler and
more reliable than first-generation Beowulf. Scyld Computing Corporation, led
by CTO Don Becker and some of the original NASA Beowulf staff, has
succeeded in a breakthrough in Beowulf technology as significant as the
original Beowulf itself was in 1994. The commodity aspects and message-
passing software remain constant from Beowulf 1 to Beowulf 2. However,
significant modifications have been made in node setup and process space
distribution.

BProc

At the very heart of the second-generation Beowulf solution is BProc, short for
Beowulf Distributed Process Space, which was developed by Erik Arjan
Hendriks of Los Alamos National Lab. BProc consists of a set of kernel
modifications and system calls that allows a process to be migrated from one
node to another. The process migrates under the complete control of the
application itself—the application explicitly decides when to move over to
another node and initiates the process via an rfork system call. The process is
migrated without its associated file handles, which makes the process lean and
quick. Any required files are re-opened by the application itself on the
destination node, giving complete control to the application process.

Of course, the ability to migrate a process from one node to another is
meaningless without the ability to manage the remote process. BProc provides
such a method by putting a “ghost process” in the master node's process table
for each migrated process. These ghost processes require no memory on the
master—they merely are placeholders that communicate signals and perform
certain operations on behalf of the remote process. For example, through the
ghost process on the master node, the remote process can receive signals,

including SIGKILL and SIGSTOP, and fork child processes. Since the ghost
processes appear in the process table of the master node, tools that display the
status of processes work in the same familiar ways.

The elegant simplicity of BProc has far-reaching effects. The most obvious
effect is the Beowulf cluster now appears to have a single-process space
managed from the master node. This concept of a single, cluster-wide process
space with centralized management is called single-system image or,
sometimes, single-system illusion because the mechanism provides the illusion
that the cluster is a single-compute resource. In addition, BProc does not
require the r commands (rsh and rlogin) for process management because
processes are managed directly from the master. Eliminating the r commands
means there is no need for user account management on the slave nodes,
thereby reducing a significant portion of the operating system on the slaves. In
fact, to run BProc on a slave node, only a couple of dæmons are required to be
present on the slave: bpslave and sendstats.

The Scyld Implementation

Scyld has completely leveraged BProc to provide an expandable cluster
computing solution, eliminating everything from the slave nodes except what is
absolutely required in order to run a BProc process. The result is an ultra-thin
compute node that has only a small portion of Linux running—enough to run
BProc. The power of BProc and the ultra-thin Scyld node, taken in conjunction,
has great impact on the way the cluster is managed. There are two
distinguishing features of the Scyld distribution and of Beowulf 2 clusters. First,
the cluster can be expanded by simply adding new nodes. Because the nodes
are ultra-thin, installation is a matter of booting the node with the Scyld kernel
and making it a receptacle for BProc migrated processes. Second, version skew
is eliminated. Version skew is what happens on clusters with fully installed slave
nodes. Over time, because of nodes that are down during software updates,
simple update failures or programmer doinking, the software on the nodes that
is supposed to be in lockstep shifts out of phase, resulting in version skew.
Since only the bare essentials are required on the nodes to run BProc, version
skew is virtually eliminated.

Of course, having the ability to migrate processes to thin nodes is not a solution
in itself. Scyld provides the rest of the solution as part of the special Scyld
Beowulf distribution, which includes features such as:

• BeoMPI: a message-passing library that meets the MPI standard, is
derived from the MPICH (MPI Chameleon) Project from Argonne National
Lab and is modified specifically for optimization with BProc.

• BeoSetup: a GUI for creating BeoBoot floppy boot images for slave nodes.

• Beofdisk: a utility for partitioning slave node hard drives.
• BeoStatus: a GUI for monitoring the status of the cluster.

Let's take a look at how to use these tools while building a Scyld Beowulf
cluster.

You can purchase the Scyld Beowulf Professional Edition (www.scyld.com) that
comes with a bootable master node installation CD, documentation and one
year of support. The Professional Edition is spectacular and supports many
advanced cluster software tools such as the parallel virtual filesystem (PVFS).
Alternatively, you can purchase a Scyld Basic Edition CD for $2.95 at Linux
Central (www.linuxcentral.com). The Basic Edition is missing some of the
features present in the Professional Edition and arrives without documentation
or support. I've built clusters with both without any problems.

It's important that you construct your Beowulf similar to Figure 1, which
illustrates the general Beowulf (1 and 2) layout. The master node has two
network interfaces that straddle the public network and the private compute
node LAN. Scyld Beowulf assumes you've configured the network so that eth0
on the master is the public network interface and eth1 is the interface to the
private compute node network. To begin the installation, take your Scyld CD,
put it in the master node's CD drive and power-cycle the machine.

Figure 1. General Beowulf Layout

You'll discover that the Scyld Beowulf master node installation is almost
identical to a Red Hat Linux installation. At the boot prompt, type install to
trigger a master node installation. Allowing the boot prompt to time out will
initiate a slave node installation by default.

Step through the simple installation procedure as you would for Red Hat Linux.
For first-time cluster builders, we're going to recommend (and assume here)
that you select a GNOME controller installation instead of a text-console-only
installation. Choosing the GNOME installation will give you access to all the slick

http://www.scyld.com
http://www.linuxcentral.com

GUI Beo* tools integrated into the GNOME desktop environment that make
building the rest of the cluster a snap.

After the typical configuration of eth0, you'll come upon the key difference with
the Scyld installation: the configuration of eth1 on the master and the IP
addresses of the compute nodes. The installation will prompt you for an IP
address (like 192.168.1.1) for eth1 and an IP address range (such as,
192.168.1.2-192.168.x) for your compute nodes. Simple enough, but make sure
you select an IP range large enough to give each of your compute nodes its
own address.

Continue through the remaining installation steps, such as X configuration. For
simplicity's sake, select the graphical login option. Wrap up the master node
installation by creating a boot disk, removing the CD (and the boot disk) and
rebooting the master node.

Log in to the master as root and the Scyld-customized GNOME desktop is fired
up for you, including the BeoSetup and BeoStatus GUIs and a compute node
quick install guide.

Initially, all compute nodes require a BeoBoot image to boot, either on a floppy
or the Scyld CD. Rather than move the Scyld CD from node to node, I prefer to
create several slave node boot images on floppies, one for each slave node. The
BeoBoot images are created with the BeoSetup tool by clicking the Node Floppy
button in BeoSetup. Insert a blank formatted floppy into the master's floppy
drive; click OK to create the BeoBoot boot image and write it to the floppy.
Repeat this for as many floppies as you like. Insert the boot floppies into the
slave node floppy drives and turn on the power.

What happens next is pretty cool but is hidden from the user (unless you hook
up a monitor to a slave node). Each slave node boots the BeoBoot image,
autodetects network hardware, installs network drivers and then sends out
RARP requests. These RARP requests are answered by the Beoserv dæmon on
the master, which in turn sends out an IP address, kernel and RAM disk to each
slave node. This process, where the slave node bootstraps itself with a minimal
kernel on a floppy disk, which is then replaced with a final, more sophisticated
kernel from the master, is dubbed the Two Kernel Monte. The slave node then
reboots itself with the final kernel and repeats the hardware detection and
RARP steps. Then the slave node contacts the master to become integrated into
BProc.

During the kernel monte business, slave node Ethernet MAC addresses will
appear in the Unknown Addresses window in BeoSetup on the master. You can
integrate them into your cluster by highlighting the addresses, dragging them

into the central Configured Nodes column and clicking the Apply button. Once
the master finishes integrating the slave nodes into BProc the nodes will be
labeled “up”. Node status will appear in BeoStatus as well.

You can partition the slave node hard drives with the default configuration in /
etc/beowulf/fdisk:

beofdisk -d
beofdisk -w

The -d option tells beofdisk to use the default configuration in /etc/beowulf/
fdisk and the -w option writes the tables out to all the slave nodes. You then
need to edit /etc/beowulf/fstab to map the swap and / filesystems to the new
partitions. Simply comment out the $RAMDISK line in /etc/beowulf/fstab that
was used to mount a / filesystem in the absence of a partitioned hard drive,
and edit the next two lines to map the swap and / filesystems to /dev/hda2 and
/dev/hda3 (/dev/hda1 is reserved as a bootable partition). If you would like to
boot from the hard drive, you can write the Beoboot floppy image to the
bootable partition like this:

beoboot-install -a /dev/hda1

You'll have to add a line in /etc/beowulf/fstab after doing this:
/dev/hda1 beoboot ext2 defaults 0 0

Reboot all slave nodes for the partition table changes to take effect:
bpctl -S all -s reboot

It doesn't get much easier than that. Unlike Beowulf 1, building a Scyld Beowulf
requires a full Linux installation on only the master node. Nothing is written out
to permanent storage on the slave nodes during their installation, making them
ultra-thin, easily maintained and quick to reboot.

To test your cluster you can run the high-performance Linpack benchmark
included with the distribution from the command line: linpack.

For a little flashier demonstration, launch a visual Mandelbrot set with the
included mpi-madel application. Starting mpi-mandel on five nodes from the
command line would look like:

NP=5 mpi-mandel

Collectively, the single-process ID space, the ability to migrate quickly processes
under control of the application, thin slave nodes and the GUI utilities for
building and monitoring a Scyld cluster, provide a cluster solution that
distinguishes itself from Beowulf 1 by its completeness, adaptability and

manageability. So, the answer is yes, you really can add more horsepower to
that cluster.

Acknowledgements

The authors would like to thank Donald Becker, Tom Quinn and Rick Niles of
Scyld Computing Corporation and Erik Arjan Hendriks of Los Alamos National
Lab for patiently answering all our questions related to second-generation
Beowulf.

Resources

Glen Otero has a PhD in Immunology and
Microbiology and runs a consulting company called
Linux Prophet in San Diego, California.

Richard Ferri is a senior programmer in IBM's Linux Technology Center, where
he works on open-source Linux clustering projects such as LUI and OSCAR. He
now lives in upstate New York with his wife, Pat, three teenaged sons and three
dogs of suspect lineage.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/6019s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

How a Poor Contract Sunk an Open-Source Deal

Henry W. III

Issue #100, August 2002

Why the Progress and NuSphere vs. MySQL AB litigation is about sloppy deal
making, not open-source integrity.

Many describe a new continuing lawsuit in federal court in Boston as “The first
litigation testing the validity and enforceability of the General Public License”
(GPL). So what?

Will this litigation really impact the future of Linux programmers? Does this
dispute matter for companies betting their business models on the open-
source trend? Will the judge get the chance to punish an arrogant American
software vendor that broke the long-known rules of GNU and thereby defend
the OSS cause, as some OSS advocates have suggested?

Sorry, probably not. Yes, the case is important. Yes, it is apparently the first GPL
court test, by consensus. But it won't foretell the OSS future because it's a
dispute about an extraordinarily poor contract in a context of chaotic, changing
communications between the parties.

You can't project the prospects of a programming language from analysis of
one short, poorly documented application coded in that language. And in this
case, the underlying contract is an outlier that's so far from norms of modern
prudent software management and licensing practices that by many orders of
magnitude, it's off the map. It ultimately will prove more relevant for “Software
Product Management 101” and “Beginner Software Contracts” training than for
refining OSS strategies.

Snapshot of a Train Wreck

The story is told in the publicly available court pleadings. The contract
underlying the litigants' dispute is a disclosed attachment to the answer filed by
the Finnish authors of the well-known MySQL OSS database to the lawsuit

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

initiated by the US software publisher/remarketer. (So the contract and the
parties' various arguments, e-mails and affidavits are “open source” for tech
managers, lawyers and trainers to study and use to improve work processes.)

This author obtained from court pleadings the original international agreement
by which a publicly traded, long-established business software company based
in Massachusetts obtained remarketing rights from a young, offshore, small
developer in Finland. Ugly surprise: these two companies agreed to do a big-
impact, large-dollar deal on a mere nine-paragraph contract. The agreement
ran all of 1.25 pages.

Progress Software agreed to pay roughly $300,000 US to a dynamic foreign
company in a new, unfamiliar (to Progress) industry segment, on the equivalent
of the proverbial envelope. MySQL AB, the Finnish company, blessed the
Massachusetts vendor's procurement of its key product by a short statement
indicating some future contract would be utilized “later”, triggering “a total of
up to $2.5 million”. The resulting fight shows precisely why experienced
business people (including lawyers) frown at the optimistic idea of “let's just
trust each other and figure out later the deal and the details.”

What's wrong with a little brevity and trust? Think of it this way: why do surgery
before taking x-rays or reviewing a medical history? Why not dive head-first in
to an unfamiliar river? You can both get hurt and hurt others by launching a
major software initiative—OSS or proprietary—without first figuring out the
basic rules. That's what happened here.

One purpose of most contracts is similar to the norms of much data
processing: benchmarking, testing and standards. Here, fragmentary code got
shipped. That is, an incomplete “agreement” was relied upon for too much
action, too soon.

Deafening, Deadly Silence

What did this short and ultimately bitter contract omit? The majority of terms
and conditions found in most software agreements, that's what. Conspicuous
by their absence, among other points, were 1) When would the expected “later,
superseding agreement” be completed? 2) Within what parameters for the
business terms? 3) Exactly what degree of service would be required and
provided for technical support? What did they mean by “enterprise level
support” and “existing electronic support channels”? 4) Who would be the
designated liaisons for intercompany coordination? 5) What does it mean to
give your licensee “fair use” rights to your key trademark, as MySQL AB blessed
here? What particular variations would be permitted and excluded? 6) What
ongoing product enhancement services by the original author would be
assured? 7) How would disputes be resolved or arbitrated, if necessary? 8) If

there's a dispute due to one party's fault, will the nonbreaching party get its
enforcement costs and damages reimbursed by the defaulting party? 9) Why
omit all the often-derided generic or “boilerplate” provisions that are included
in most contracts precisely because they help prevent disputes and enable
enforcement?

Learning Lessons from Others' Wrecks: Code Your Contracts Like Your Software

Most modern, mature software businesses recognize the many issues that can
and do arise in a software distribution deal. They design their deal (e.g., in a
“terms sheet” or outline), then “code” (i.e., write a draft contract), then test and
document their agreements (i.e., negotiate and refine the base contract and
write and revise the necessary exhibits), just as they do their applications.

For example, many software projects identify “user requirements” in detail and
in advance. This deal apparently lacked a joint “terms sheet” or “deal summary
memo” as the anchor for the agreement.

Most applications get a look-over for quality control by programmer colleagues.
Automated code-testing tools get deployed in some complex environments.
This contract presumably was shipped out as the handiwork of one individual,
or at least of a very small team.

Savvy software professionals include error-message features. This oblique
agreement lacked the typical “notice of breach, then opportunity to cure the
breach” provision.

Experienced coders include header files and other technical documentation in
their work to assist later revisions and debugging. In your software
transactions, include specified modes of communications between the author
and publisher companies. Decide up front which particular individuals have the
authorization to pass commercial instructions, objections and suggestions to
some specified person(s) in the other organization.

Frightful Images: Ships Passing in the Night

The contract's brevity means the parties may raise legal issues that will muddy
the waters or at least defer the outcome. Remember, the wheels of the justice
system can grind very slowly, at least in the US.

OSS loyalists hoping for court affirmation of the GNU model may be frustrated:
both sides of the suit have already raised legal arguments unrelated to the OSS
issue. For example, MySQL AB has already obtained (on February 28) a partial
injunction against Progress and its young OSS subsidiary NuSphere, but on
trademark law grounds, not enforcement of the GPL. The federal judge found

the GPL issue too uncertain to adjudicate in this litigation's early, summary
phase.

Then there's the legal doctrine of “mutual mistake”. A contract sometimes can
go unenforced when both parties inadvertently hold different, though
reasonable, interpretations of the deal's predicate and terms. The classic case
involves a similar cross-border mishap.

When Going to Rome, Study Ahead

The rashness of this saga is underscored by its multicountry context.
Transnational transactions merit extra thinking and terms, just like
multinational applications often require more modular screen messaging, two-
byte code (for Asian character sets), accommodating different operating system
iterations and other shrewd coding.

Doing deals with foreign companies requires extra consideration. For example,
many offshore companies prefer (or insist on) the use of arbitration to resolve
disputes, both as part of a strong cultural tradition and to avoid the rumored
American tendency toward premature, extended and expensive litigation.
(Here, the litigants filed 73 different court pleadings in the initial nine months of
the case, with no end in sight.)

World travelers arrange translators, confirm supply lines and determine local
communication protocols before setting out. In international contracts, many
companies take similar extra steps. They pre-agree on minimum collaborative
product planning, contractually commit to visit each other's headquarters and
meet at major global tradeshows and include other contractual “glue code” to
help refine the relationship. Common sense says to develop a map when
venturing into unfamiliar territory. Here, the parties got lost and found
themselves in court, with the resulting marketing disasters, big litigation bills
and an uncertain product road map.

What to Think; What to Do

Some in the OSS community have attacked Progress and NuSphere, citing the
accurate but fragmentary story that the MySQL code got modified and then
marketed via a proprietary license, not the GPL or some other OSS license.
True, NuSphere modified its model to use GPL, and in NuSphere's view thus
fixed a mere short-term oversight. But that's not the full story. The pleadings
suggest another perspective: criticize Progress instead for letting some product
manager do a poorly documented contract, presumably without coordinating
with counsel and other colleagues. Sentence this individual to attend a licensing
workshop. Maybe commute the sentence due to time-to-market competitive
pressures. And then bet good money that next time both companies will use

traditional, coherent, complete software contracts, after learning from
spending big bucks on litigators and losing time, managerial energy and market
goodwill.

The Progress-NuSphere-MySQL fight ultimately may prove to be just another
chapter in the long book of companies who practiced “ready, fire” without
adequate “aim”.

Example of Poor Code

Henry W. (Hank) Jones, III is a 22-year software consultant, manager and lawyer
who founded and leads the UC Berkeley Extension software licensing workshop
and has worked with over 75 software companies. Operating as
MemphisHank@aol.com, he regularly leads corporate training sessions and
trade group panels on open source and other software and technology issues.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/6025s1.html
mailto:MemphisHank@aol.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Hey Embedded Developers! Buy This Magazine!

Don Marti

Issue #100, August 2002

We've added an embedded Linux development section with in-depth
information on device-driver coding and more that even a desktop developer
can use.

Those of you who are primarily interested in the development of embedded
systems may ask why start reading Linux Journal now when you can just tell it's
going to be full of non-embedded stuff? And why should regular Linux
developers care about the embedded articles? The stuff you're interested in
won't run on a Linux watch anyway, right?

The short answer is that Greg Kroah-Hartman's Driving Me Nuts column, on
device drivers, will be starting this month. Greg maintains the Linux USB and
PCI Hot Plug support and has written great articles for both Linux Journal and
Embedded Linux Journal. Now we bring you Kernel Korner every month and
Driving Me Nuts every other month, which averages out to a monthly helping
and a half of kernel goodness you won't find anywhere else.

Now that you've sent in your subscription card, the long answer is that Linux,
and free software in general, are inherently embeddable. By their nature,
embedded projects thrive on software that is free to port, customize and sell. If
you don't believe this, look at the spectacular success (ha!) of the much-hyped
wannabe “Media OS”, BeOS, which sank without a splash while the real media
devices, such as TiVo and Moxi, went Linux.

When I told Greg about the new Cypress USB chip, the SL811HS, and the driver
for it that Cypress is releasing under GPL, his first reaction was that he was glad
Cypress has “a clue”. It looks like a very useful part, too. It does both host and
slave, so you could plug a PDA into your computer to sync files and plug USB
peripherals, such as a mouse or keyboard, into the PDA later. Try one.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For those of you developing for desktop or server Linux, why make your users
sit around and get carpal tunnel syndrome when they could be using a
convenient embedded device where the real work (or fun) is? Or better yet, why
not cut the user out of the boring stuff altogether and let the machine deal with
the real world? Your software will effectively accomplish more in an
“embedded” device than in the server room or office. Same goes for your web
site. Try it on a Zaurus today.

But back to the clue part. Embedded Linux isn't just a shrink-wrap package that
says “embedded” on it. It's a standard generic platform with a thorough
collection of drivers that's growing every day (thanks Cypress), distributed
under a license that lets you get some work done. Just like regular Linux,
embedded systems are good software for clueful people.

1. An embedded system doesn't need system administration.
2. It comes with the application pre-installed. You don't have to install

additional software to get something done.
3. It's responsive. Many embedded systems have formal real-time

requirements, but even those that don't at least don't make you wait for
silly things like fdisk.

4. It interfaces with the real world, not just the network and a carpal-tunnel-
slaying keyboard and mouse.

5. It can't be reasoned with! It doesn't feel pity, remorse or fear!
6. And it absolutely will not stop, ever, until you are dead!

No, wait, the last two are “The Terminator”, not all embedded systems. But you
get the idea. Embedded systems are what software wants to be when it grows
up, and “regular Linux” is headed in the same direction.

Don Marti is technical editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The tty Layer

Greg Kroah-Hartman

Issue #100, August 2002

In the first of a series of articles on device-driver development, we'll start with
how the kernel handles the system console and serial ports.

Welcome to a new column called Driving Me Nuts. Here we are going to explore
the different Linux kernel driver subsystems and try to understand the wide
range of different interfaces they provide and expect a driver to provide. If
there are any specific subsystems that anyone would like explained, please
drop me an e-mail.

There are a number of very good references on Linux kernel programming and
Linux driver programming (see Resources). This column assumes you have at
least skimmed these in the past or have them handy as a reference.

To start things off, let's look into the kernel's tty layer. This layer is used by all
Linux users whenever they type at a command prompt or use a serial port
connection.

Every tty driver needs to create a struct tty_driver that describes itself and
registers that structure with the tty layer. The struct tty_driver is defined in the
include/linux/tty_driver.h file. Listing 1 [available at ftp.linuxjournal.com/pub/lj/
listings/issue100/5896.tgz] shows what the structure looks like as of the 2.4.18
kernel version. This is a rather large and imposing structure, so let's try to break
it into smaller pieces.

The “magic” field should always be set to TTY_DRIVER_MAGIC. It's used by the
tty layer to verify that it is really dealing with a tty driver.

The driver_name and name fields are used to describe your driver, and
driver_name should be set to something descriptive, as it will show up in the /
proc/tty/drivers file. The name field is used to specify what the /dev or devfs
name base is for your driver. As an example, the kernel serial driver sets the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5896.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5896.tgz

driver_name field to serial, the name field to ttyS if devfs is not enabled, and
tts/%d if devfs is enabled. If devfs is enabled, it will use the name field when
creating new device nodes for your driver. The %d portion of the name will be
filled in with the minor number of the device when it is registered in the tty
subsystem.

The name_base field is only necessary if your device does not start at minor
number 0. For almost all drivers, this should be set to 0.

The major, minor_start and num fields are used to describe what major/minor
numbers are assigned to your driver to the tty layer. The major field should be
set to the major number assigned to your driver. If you are creating a new
driver, read the file Documentation/devices.txt on getting a new major number
for your driver. This file is also good reading for anyone who wants to see what
major/minor number pair is used by what driver. The minor_start field is used
to specify where the first minor number is for your device. If you have an entire
major number assigned to your driver, then this should be set to 0. The num
field describes how many different minor numbers you have assigned to your
driver.

So if you have all of major 188 assigned to your driver, then your driver should
set these fields to:

• major: 188,
• minor_start: 0,
• num: 255,

The type and subtype fields describe what kind of tty driver your driver is to the
tty layer. The type field can be set to the following values:

• TTY_DRIVER_TYPE_SYSTEM: used internally by the tty subsystem to notify
itself that it is dealing with an internal tty driver. If this value is used, then
subtype should be set to SYSTEM_TYPE_TTY, SYSTEM_TYPE_CONSOLE,
SYSTEM_TYPE_SYSCONS or SYSTEM_TYPE_SYSPTMX. This type should not
be used by any normal tty driver.

• TTY_DRIVER_TYPE_CONSOLE: only used by the console driver. Do not use
it for any other driver.

• TTY_DRIVER_TYPE_SERIAL: used by any serial type driver. If this value is
used, then subtype should be set to SERIAL_TYPE_NORMAL or
SERIAL_TYPE_CALLOUT, depending on which type your driver is. This is
one of the most common settings for the type field.

• TTY_DRIVER_TYPE_PTY: used by the pseudo-terminal interface (pty). If this
value is used, then subtype needs to be set to either PTY_TYPE_MASTER or
PTY_TYPE_SLAVE.

The init_termios field is used to set up the initial termios (the line settings and
speeds) for the device when it is first created.

The flags field is set to a mixture of the following bit values, depending on the
needs of the driver:

• TTY_DRIVER_INSTALLED: if this bit is set, the driver cannot register itself
with the tty layer, so do not use this value.

• TTY_DRIVER_RESET_TERMIOS: if this bit is set, the tty layer will reset the
termios setting whenever the last process has closed the device. This is
useful for the console and pty drivers.

• TTY_DRIVER_REAL_RAW: if this bit is set, it indicates that the driver
guarantees to set notifications of parity or break characters up to the line
driver if the line driver has not asked to be notified of them. This is usually
set for all drivers, as it allows the line driver to be optimized a little better.

• TTY_DRIVER_NO_DEVFS: if this bit is set, then the call to
tty_register_driver() will not create any devfs entries. This is useful for any
driver that dynamically creates and destroys the minor devices,
depending on whether the physical device is present. Examples of drivers
that set this are the USB to serial drivers, the USB modem driver and the
USB Bluetooth tty driver.

The refcount field is a pointer to an integer within the tty driver. It is used by
the tty layer to handle proper reference counting of the driver and should not
be touched by the tty driver.

The proc_entry field should not be set by the tty driver itself. If the tty driver
implements the write_proc or read_proc functions, then this field will contain
the driver's proc_entry field that will have been created for it.

The other field is only used by the pty driver and should not be used by any
other tty driver.

Now we have some pointers to different tty structures. The table field is a
pointer to an array of tty_struct pointers. The termios and termios_locked fields
are pointers to an array of struct termios pointers. All of these arrays should
have the same number of entries as you have set the minor field to above.
They are used by the tty layer to handle the different minor devices properly
and should not be touched by your tty driver.

The driver_state field is only used by the pty driver and should not be used by
any other tty driver.

There is a large list of different function pointers in the tty_driver structure.
These function pointers are used by the tty layer to call into the tty driver when
it wants to do something. Not all of them have to be defined by a tty driver, but
a few of them are required.

The open function is called by the tty layer when open(2) is called on the device
node to which your tty driver is assigned. The tty layer calls this with a pointer
to the tty_struct structure assigned to this device and a file pointer. This field
must be set by a tty driver for it to work properly (otherwise, -ENODEV is
returned to the user when open(2) is called).

The close function is called by the tty layer when release(2) is called on the file
pointer that was previously created with a call to open(2). This means that the
device should be closed.

The write function is called by the tty layer when data is to be sent to your tty
device. The data may come from user space or kernel space (the field
from_user will be set if the data comes from user space). This function should
return the number of characters that are actually written to the device. This
function must be set for a tty driver.

The put_char function is called by the tty layer when a single character is to be
written to the device. If there is no room in the device for the character to be
sent, the character may be ignored. If a tty driver does not define this function,
then the write function will be called when the tty layer wants to send a single
character.

The flush_chars function is called when the tty layer has sent a number of
characters to the tty driver using the put_char function. The tty driver should
tell the device to send all of the data remaining in it out of the serial line.

The write_room function is called when the tty layer wants to know how much
room the tty driver has available in the write buffer. This number will change
over time as characters empty out of the write buffers.

The chars_in_buffer function is called when the tty layer wants to know how
many characters are still remaining in the tty driver's write buffer to be sent
out.

The ioctl function is called by the tty layer when ioctl(2) is called on the device
node. It allows the tty driver to implement device-specific ioctls. If the ioctl
requested is not supported by the driver, it should return -ENOIOCTLCMD. This
allows the tty layer to implement a generic version of the ioctl, if possible.

The set_termios function is called by the tty layer when the device's termios
settings have been changed. The tty driver should then change the physical
settings of the device, depending on the different fields of the termios
structure. A tty driver should be able to handle the fact that the old variable
might be set to NULL when this function is called.

The throttle and unthrottle functions are used to help control overruns of the
tty layer's input buffers. The throttle function is called when the tty layer's input
buffers are getting full. The tty driver should try to signal the device that no
more characters are to be sent to it. The unthrottle function is called when the
tty layer's input buffers have been emptied out, and it now can accept more
data. The tty driver should then signal to the device that data can be received.

The stop and start functions are much like the throttle and unthrottle functions,
but they signify that the tty driver should stop sending data to the device and
then later resume sending data.

The hangup function is called when the tty driver should hang up the tty device.

The break_ctrl function is called when the tty driver is to turn on or off the
BREAK status on the RS-232 port. If state is set to -1, then the BREAK status
should be turned on. If state is set to 0, then BREAK should be turned off. If this
function is implemented by the tty driver, then the tty layer will handle the
TCSBRK, TCSBRKP, TIOCSBRK and TIOCCBRK ioctls. Otherwise these ioctls will
be sent to the tty driver's ioctl function.

The flush_buffer function is called when the tty driver is to flush all of the data
still in its write buffers. This means any data remaining in them will be lost and
not sent to the device.

The set_ldisc function is called when the tty layer has changed the line
discipline of the tty driver. This function is generally not used anymore and
should not be set.

The wait_until_sent function is called when the tty layer wants all of the pending
data in the tty driver's write buffers to be sent to the device. The function
should not return until this is finished and is allowed to sleep in order to
achieve this.

The send_xchar function is used to send a high-priority XON or XOFF character
to the tty device.

The read_proc and write_proc functions are used if the driver wants to
implement a /proc/tty/driver/<name> entry; <name> will be set to the name

field described above. If either of these functions are set, then the entry will be
created and any read(2) or write(2) calls will be passed to the appropriate
function.

And finally, the next and prev fields are used by the tty layer to chain all of the
different tty drivers together and should not be touched by the tty driver.

No Read?

One thing that might stand out in the above list of functions is the lack of a read
function to be implemented by the tty driver. The tty layer contains a buffer
that it uses to send data to user space when read(2) is called on a tty device
node. This buffer needs to be filled up by the tty driver whenever it receives any
data from the device. Because tty data does not show up whenever a user asks
for it, or wants it, this model is necessary. That way the tty layer buffers any
received data and the individual tty driver does not have to worry about
blocking until data shows up on the tty line.

The Tiny tty Driver

Now that we have gone over all of the different fields, which ones are actually
necessary to get a basic tty driver up and running? Listing 2 is an example of
the most minimal tty driver possible. Once the steps shown there are
completed, create the tiny_open, tiny_close, tiny_write and tiny_write_room
functions and you are finished with a tiny tty driver.

Listing 2. Minimal TTY Driver

For an example implementation of a tiny tty driver, see Listing 3 [available at
ftp.linuxjournal.com/pub/lj/listings/issue100/5896.tgz]. This tty driver creates a
timer to place data into the tty layer every two seconds in order to emulate real
hardware. It also properly handles locking the device structures when it is run
on an SMP machine.

Flow of Data

When the tty driver's open function is called, the driver is expected to save
some data within the tty_struct variable that is passed to it. This is so the tty
driver will know which device is being referenced when the later close, write
and other functions are called. If this is not done, the driver can key off of the
MINOR(tty->device) function, which returns the minor number for the device.

If you look at the tiny_open function, the tiny_serial structure is saved within
the tty driver. This allows the tiny_write, tiny_write_room and tiny_close
functions to retrieve the tiny_serial structure and manipulate it properly.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5896l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5896.tgz

The open and close functions of a tty driver can be called multiple times for the
same device as different user programs connect to the device. This could allow
one process to read data and another to write data. To handle everything
correctly, you should keep a count of how many times the port has been
opened or closed. When the port is opened for the first time you can do the
necessary hardware initialization and memory allocation. When the port is
closed for the last time you can do the proper hardware shutdown and free any
allocated memory. See the tiny_open() and tiny_close() functions for examples
of how the number of times the port is opened can be accounted for.

When data is received from the hardware, it needs to be placed into the tty
device's flip buffer. This can be done with the following bit of code:

for (i = 0; i < data_size; ++i) {
 if (tty->flip.count >= TTY_FLIPBUF_SIZE)
 tty_flip_buffer_push(tty);
 tty_insert_flip_char(tty, data[i], 0);
}
tty_flip_buffer_push(tty);

This example makes sure there are no buffer overflows in the tty flip buffer as
the data is being added. For drivers that accept data at very high rates, the tty-
>low_latency flag should be set, which will cause the last call to
tty_flip_buffer_push() to be executed immediately when called. In the example
driver, the tty_timer function inserts one byte of data into the tty's flip buffer
and then resubmits the timer to be called again. This emulates a slow stream of
characters being received from a hardware device.

When data is to be sent to the hardware, the write function is called. It is
important that the write call checks the from_user flag to prevent it from
accidentally trying to copy a user-space buffer directly into kernel space. The
write function is allowed to return a short write. This means that the device was
not able to send all of the data requested. It is up to the user-space program
that is calling the write(2) function to check the return value properly to
determine if all of the data was really sent. It is much easier for this check to be
done in user space than it is for a kernel driver to sleep until all of the
requested data is able to be sent out.

The tty Interface over Time

The tty layer has been very stable from the 2.0, 2.2 and 2.4 kernel versions, with
only a very minor amount of functionality added over time. So a tty driver
written for 2.0 will successfully work on 2.4 with almost no changes.
Throughout the 2.5 kernel series, the tty layer has been marked for a rewrite,
so this article may describe things that are no longer true. When in doubt, read
the include/tty_driver.h file of the kernel version for which you wish to develop.
Also, take a look at any of the tty drivers in the driver/char kernel directory for

examples of how to implement some of the functions that are not covered
here.

Conclusion

We have covered the basics of the tty layer, explaining all of the different fields
in the tty_driver structure for the 2.4 kernel tree and pointing out which ones
are necessary for a driver to implement. The tiny_tty.c driver, see Listing 3
[available at ftp.linuxjournal.com/pub/lj/listings/issue100/5896.tgz], is a good
example of a very minimal tty driver that successfully works. Feel free to use
this code as an example for your own tty drivers in the future.

Resources

Greg Kroah-Hartman is currently the Linux USB and PCI Hot Plug kernel
maintainer. He works for IBM, doing various Linux kernel-related things and
can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/5896.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/100/5896s1.html
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Embedded System àla Carte

Peter Ryser

Michael Baxter

Issue #100, August 2002

Virtex-II Pro FPGA and MontaVista Linux provide a highly flexible and powerful
solution for embedded system designers.

How many times have you faced the problem that after the specification phase
is complete you simply cannot find a matching microprocessor with the
required type and number of peripherals? How many times did you find out
that for the closest matching microprocessor no Linux port is available? How
hard was it to put together all the tools you need to design and debug your
system? How many hours have you spent working around all of these issues? In
any case, relax! The Virtex-II Pro FPGA family and the corresponding tools
combined with MontaVista Linux OS and development environment enables
you to pick your system à la carte and saves you a lot of time and sweat.

The Virtex-II Pro FPGA family offers up to four hard-core PowerPC 405
processors, 16 Rocket I/O 3.125Gbps serial transceivers, 3.8Mb of block RAM
(BRAM) and four million system gates on a single programmable platform chip.
This rich set of features opens the field for a wide range of applications and
provides high flexibility for system designers. Single-chip systems with an
arbitrary number and type of I/O devices are possible. For example, you can
have five UARTs, a PCI bus and several Gigabit Ethernet ports all controlled by
the on-chip processors.

An Xilinx partnership with IBM introduces support for the hard-core PPC405, a
robust busing standard and a device fabrication process. Xilinx offers a wide
variety of intellectual property (IP) cores for the Virtex-II Pro FPGA, which are
predefined hardware blocks that directly snap into IBM's CoreConnect bus
technology (Figure 1).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. IP Cores Connected to CoreConnect

CoreConnect has several features for interconnecting the processor to the
FPGA fabric in order to construct system designs. The key CoreConnect
features are the application-oriented system buses, which include the
processor local bus (PLB), the on-chip peripheral bus (OPB) and the device
control register (DCR) bus. Selected IP cores include many forms of I/O and
external memory controllers. For I/O, the cores include 16450- and 16550-
compatible UARTs, IIC controller and SPI controller. The memory controllers
include support for SRAM/FLASH, SDRAM, DDR SDRAM and ZBT devices. More
sophisticated, system-level I/O is also available as IP cores: PCI cores, 10/100
Mb Ethernet, Gb Ethernet and the System ACE configuration interface. Each
core is delivered with a corresponding driver where appropriate. The drivers
are shipped as source code.

The powerful software design tools that help the user make use of the
processors, the IP cores and, more generally the FPGA, will be described here in
more detail. The interaction of this hardware and software is unique for the
Virtex-II Pro FPGA because it enables the design of a completely custom
embedded system solution on a single chip. The issues of hardware/software
codesign include use of powerful application software tools for embedded
Linux and some unique tools for embedded debugging. Before delving into
codesign issues, let's look a little deeper inside the Virtex-II Pro FPGA.

The PowerPC 405 processors run at 300+ MHz and each have 16KB of data and
16KB of instruction cache. The PLB and OPB buses run at 100+ MHz. A powerful
feature of the Virtex-II Pro FPGA is the implementation of the on-chip memory
(OCM). The OCM is memory that has similar access characteristics as the
processor caches but is managed by the user. The Virtex-II Pro FPGA
implements the OCM as dual-ported BRAM, allowing for an extremely fast data
path from peripheral devices to the processor or as a communication buffer
between processors.

The Rocket I/O 3.125Gbps serial transceivers support many different
communication standards, listed in Table 1. Important features like buffers, 8B/
10B encoding and decoding, and CRC calculation and checking are
implemented on-chip and do not take space away from the FPGA fabric.

Table 1. Virtex-II Pro Platform FPGAs support these protocols and baud rates.

The BRAMs can be used as memory accessible by the processors and can be
connected to CoreConnect or as OCM. While OCM offers better performance
and a direct way to the processor, hooking up the BRAM to the PLB makes it
available for DMA transfers where the processor is not involved. It is up to the
system designer to decide how the BRAM is used best.

The FPGA fabric can be filled with IP cores provided from Xilinx or with user-
specified designs. While some of the IP cores interact with each other, others
work completely in parallel.

Because FPGAs can be reconfigured dynamically you can even switch the
number and type of devices while the system is running. Such a flexible
platform needs a powerful operating system and tools for hardware and
software engineers to develop and debug their embedded applications.

Depending on their application, users may choose from a wide variety of COTS
(commercially available off the shelf) real-time operating systems, proprietary
RTOS or embedded Linux environments. In the Linux arena, Xilinx chose
MontaVista Linux as a suitable embedded OS and development environment
for the Virtex-II Pro FPGA family because of its extreme versatility. Linux, by
default, supports a wide range of devices. Xilinx and MontaVista Software chose
to use a layered device-driver approach. It is split into a low-level, OS-
independent layer that directly sets up on the hardware and an OS specific
adaptation layer that sits in the middle between the OS and the low-level
drivers. Xilinx provides the low-level drivers written for optimal performance
and best use of the functionality of the IP cores. MontaVista Software
implements the adaptation layer for Linux and uses its expertise for a seamless
integration of the drivers. Both driver layers are pushed into the open-source
repository and are released under the GPL (General Public License). All device
drivers can be compiled into the kernel or are available as loadable modules.
Being able to load and unload driver modules supports hardware that can be
reconfigured while the system is running. Replacing hardware in a running
system is a well-known process for external devices like USB devices and PC
cards, but replacing hardware on the chip and dynamically loading the
corresponding Linux driver is something completely new.

https://secure2.linuxjournal.com/ljarchive/LJ/100/6073t1.html

The Linux port is first targeted toward the Virtex-II Pro ML300 Platform from
Xilinx (shown in Figure 2), and it supports most of the IP cores and hardware on
this board. Since the ML300 is an elaborate board with a lot of functionality, it
will be easy for users and customers to adapt the port to their own specific
hardware. MontaVista Software offers professional support for such projects.

Figure 2. Virtex-II Pro ML300 Platform—Bottom View

Still, hardware and software engineers need powerful tools to develop, boot
and debug their systems. With System Generator for Processors, GDB/XMD,
System ACE and ChipScope Pro, Xilinx has a complete tool suite for all aspects
of hardware, software and systems engineering.

System Generator for Processors (SGP) helps you put together the design for
the Virtex-II Pro FPGA both on the hardware and on the software sides. In user-
friendly dialog boxes you can specify all the parameters for the system, like
base addresses for the peripherals, interrupts to be used and amount of
memory present. As a result, SGP emits the hardware design files that are
ready for FPGA implementation or simulation and a parameter file that is used
when the Linux kernel is built and the corresponding driver modules are
created. Listing 1 shows an excerpt of the parameter file. In this case, the user
assigned parameters to configure the interrupt controller in the system.

Listing 1. Excerpt of the Parameter File to Configure the Device Drivers

SGP gives system architects the flexibility to investigate different options and
variations for their new embedded systems. Setting the parameters to different
values tailors the hardware and software to the specific requirements. Only
functionality that will be accessed and used is included in the system; other
functionality is stripped out of the design. Additionally, devices are
preconfigured with the default parameters. As a result the hardware and
software use less space, offer better performance and the initialization process
is much simpler (in some cases it is not even required). SGP and its companion
tools use an open interface that makes it simple for users to add their own
hardware functionality and software drivers. XMD is a debugging server using
the on-chip debug (OCD) protocol to communicate with GDB on the host

https://secure2.linuxjournal.com/ljarchive/LJ/100/6073l1.html

system. It controls the target system through the JTAG port of a processor in
the Virtex-II Pro FPGA. At the same time, XMD serves multiple GDBs. Thus, it is
possible to debug more than one processor at once. More specifically, all four
processors within one Virtex-II Pro FPGA can be debugged simultaneously. On
Linux, GDB runs on the command line or with one of the different front ends. It
is compiled with support for the Insight GUI but can also be used with DDD and
Emacs.

In GDB the PPC405 architecture was added and the “target ocd” command was
extended to support all the features of the Virtex-II Pro FPGA. As a result all the
registers of the PPC405, the caches, the TLB (translation look aside buffer)
entries and the contents of the OCM cannot only be inspected and changed but
also can be mapped into the memory space of the processor.

Debugging an embedded system traditionally has been a difficult process. You
have to look at hardware and software at the same time. An external, non-
intrusive software debugger like GDB combined with XMD is a big help.
Additionally, the PPC405 supports hardware breakpoints and allows freezing
the processor on exceptions. But especially when processors and peripherals
are integrated on the same chip, it is difficult to see what transactions are
executed and how (in which order) memory is accessed. All the important
signals are buried within the chip, and there is normally no way to get access to
these signals. The Virtex-II Pro FPGA does not have such a limitation because it
integrates peripherals as soft hardware. All signals are visible and can be
accessed with the appropriate tool.

ChipScope Pro is an integrated hardware logic analyzer. It consists of a logic
analyzer running on the debugging host system and a set of trigger and data
units compiled or inserted into the hardware design. The integrated logic
analyzer (ILA) units can be hooked up to any number of signals inside the FPGA
and can trigger on user-defined conditions or processor bus transactions.
Multiple ILA units can be active at the same time. Sometimes it is useful to hook
up multiple ILAs to the same signals. In one case, we hooked up two different
ILA units to the PLB address and data lines to resolve a problem with corrupted
memory. One ILA was hooked up to the PLB signals connected to the PPC405.
We knew that the processor would do a memory access at the time when the
corruption would occur. The other ILA was hooked up to the PLB signals
connected to the DDR memory controller. By comparing the address and data
lines reported by the two ILA units, we were able to isolate the problem and fix
it. Having access to the hardware and being able to watch bus transactions is
very useful, especially in Linux where the MMU is used. From a software
perspective, the same physical block of RAM can be mapped into many
different virtual address spaces. On the hardware level, all addresses are
physical.

The combination of ChipScope Pro, GDB and XMD gives the developer
extremely high visibility into the system. The software tools share a common
cable and communicate through the JTAG port of the FPGA. The friendly
cooperation between the tools reduces the number of cables and makes the
setup of the debugging environment much easier.

The boot process is an imminently important phase when an embedded
system is powered up. In a few steps the components on the board, the
processor, the memory system and the communication infrastructure are
brought up. On the Virtex-II Pro FPGA, the boot process happens in two steps.
On one hand, the FPGA is configured, and on the other hand, the processor is
started. The FPGA needs to be configured with its functionality in one of many
different ways. We will show one recommended method later in this article.
Often a specialized primary boot loader is used to start the processor, bring up
the system, load the Linux kernel into memory and transfer control to the entry
point of the kernel. The Virtex-II Pro FPGA supports this traditional boot
method where the primary boot loader resides in external ROM or in internal
BRAM. The latter case removes the need for external ROM in that the primary
boot loader is included in the bit stream that configures the FPGA. Immediately
after the FPGA is configured the processor is released from reset, starts reading
instructions from the internal BRAM and executes the primary boot loader.

A new and, especially with MontaVista Linux, powerful solution to boot the
system uses System ACE. System ACE is a companion chip external to the
Virtex-II Pro FPGA and allows booting a system without having any ROM. It has
two main functions. For one, it boots the system by configuring the FPGA, the
processor and any device on the processor bus through the JTAG chain from a
CompactFlash card or a Microdrive. And two, it uses the same storage device as
a filesystem accessible by Linux.

The Microdrive contains a FAT12 or FAT16 and a Linux partition. The Linux
kernel is configured with support for the System ACE device, compiled,
converted into a System ACE-specific file format, concatenated with the
configuration bit stream for the FPGA and stored on the FAT filesystem. On
power-up, System ACE reads the configuration file from the FAT filesystem,
configures the FPGA and boots the kernel. During the boot process, the Linux
kernel mounts the Linux partition on the Microdrive as a root filesystem. The
non-obvious advantages of booting with System ACE are that no memory at all
is required at the reset vector of the processor, different boot configurations
can be stored on the FAT partition and the boot configuration can be changed
by normal file operations.

System ACE works on the JTAG chain like an external debugger through the
debug port of the processor. Code, data and, if required, a RAM disk, for the

Linux kernel are loaded through the JTAG chain and the processor bus into
system memory. Configuration of any devices in the system accessible by the
processor can be done in the same way before the kernel is loaded. And at the
end, the program counter of the PPC405 is set to the start address of the Linux
kernel and directly executed from this location.

A switch points System ACE to one of eight active configurations. The
configuration to be loaded also can be set by software. A running Linux system
selects the new configuration, resets the system and boots into this new
configuration that may consist of a different set of peripherals.

The FAT filesystem allows Linux to update the System ACE file while the system
is running—a very powerful solution to upgrade hardware and software in-
system and on the fly.

The Virtex-II Pro Developer's Kit adds another dimension to a successful system
design experience. The kit allows you to simulate your embedded system
before you build real hardware and introduces another abstraction level during
the debugging phase. Each component of the system can be simulated on its
own. Once the whole system is put together, hardware and software can be run
in the simulation to verify the functionality of the embedded system. Problems
observed in real hardware can be taken back into simulation and tracked down.
GDB/XMD can be configured to connect to HDL simulators and enables an
engineer to follow the program execution step by step and watch the bus
transactions and hardware state changes as they occur. The completeness of
the combination of the Virtex-II Pro FPGA with MontaVista Linux makes it an
ideal platform for many different applications. The Rocket I/O serial multigigabit
transceivers make it interesting for telecommunications, for example, in base
stations where complex calculations have to be combined with high bandwidth
and enormous computing power. The same transceivers can also be used as a
backplane interconnect between multiple devices. The available peripherals
combined with up to four processors also make it an ideal platform for data
and graphics terminals or even as a workstation.

The integration of processors into the FPGA fabric offers some opportunities
for interesting system architectures and future development. On the
architectural side, in a simple system, multiple processors can be
interconnected by a shared PLB. A more complex system uses a switched
approach to prevent congestion on the bus and gain better performance. Due
to the nature of FPGAs, system designers might start with the simple approach
and later change their strategy. In any case, Linux will have to support the
architecture. Since semaphores and mutexes are easily implemented by dual-
ported BRAM, resource management and access to shared memory are
straightforward. Hardware/software coprocessing will improve system

performance a great deal. While hardware is fast and can execute in parallel,
software is much more flexible. Linux will call certain system functions that in
reality are implemented in hardware. It will be a challenge for the system
designer to find the functions for which it makes sense to off-load into
hardware, but it pays off in a faster and more dynamic system. In an even more
complicated system Linux will use dynamic coprocessing. It partially
reconfigures the FPGA with the desired hardware functions optimized for the
currently running applications. While one application calculates extensive FFT
transformations, another application searches for patterns in a data stream.
Whenever the scheduler transfers control to one of the two applications, it also
replaces the corresponding IP. Based on statistical data, the scheduler decides
whether the application will be hardware accelerated or whether a
corresponding software function is used. The Virtex-II Pro FPGA and MontaVista
Linux combined with the corresponding system generation, debugging and
configuration tools is a powerful and flexible solution. It enables you to
implement the design in your specification and not the one given by hardware
and software limitations, increases the integration factor without losing
observabilitiy, reduces time-to-market because of available IP cores and related
software drivers, and finally, opens a new dimension to your creativity with
respect to hardware/software codesign.

Michael Baxter has been working in computer technology since he was nine,
imprinted by a 1969 viewing of 2001: A Space Odyssey. He is an experienced
computer architect, system, board and FPGA logic designer. Michael holds ten
US patents in computer architecture and logic, plus five patents as a co-
inventor. His interests also include hiking, amateur radio and programming in
Lisp.

Peter Ryser works as a systems design engineer for Xilinx, Inc. He is responsible
for various embedded software-related projects for Virtex-II Pro and can be
reached at peter.ryser@xilinx.com.

Archive Index Issue Table of Contents

mailto:peter.ryser@xilinx.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

GNU Bayonne Is for Telephony

David Sugar

Issue #100, August 2002

The Bayonne Project makes running telephony software on any vendor's card
possible.

Three years ago I came to realize that we had a serious need in free software.
Although free software had expanded to fill almost every other void in the
enterprise infrastructure, we had not addressed the needs of
telecommunications. Telecommunications are not only a part of the
infrastructure of every business, but they are also an often overlooked part of
the desktop user's experience. At the same time, the hardware required to
create telephony services for the public telephone network has become more
widely available under commodity PC platforms and operating systems,
including GNU/Linux.

In choosing to address telecommunications with free software, I and a few
others decided to create a framework describing what all these services might
be, ranging from the needs of desktop users and application programmers to
the needs of the largest commercial carriers. This project later became known
as GNUCOMM when it was officially folded into a GNU project working group.

One area we chose to define was the idea of a telephony application server.
Such a server should make it both possible and easy to create and deploy new
telephony application services. These would be applications specifically written
to interact with real people that call the server over regular telephone lines and
interact with the application with both a voice and a telephone keypad.

Applications of this nature typically include things like voice-mail systems or
prepaid (debit card) calling platforms. All of these systems are complex and
sometimes programmable systems and specialized computer telephony
hardware are needed to provide an interface between the PC platform and the
public telephone network. This can be hardware that talks to individual analog
telephone lines or even hardware that provides multiport voice control over

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

ISDN and T1 digital voice circuits, which larger enterprises can get directly from
a local carrier's central office.

With full consideration that such systems in the past were generally very
expensive, always proprietary and often hard to program, I chose to solve all of
these problems at once by writing a server under the best supported free
software platform available at the time: GNU/Linux.

When we started the project, few companies provided telephony hardware
under GNU/Linux, so we used what was available. Even now, each telephony
card is different from every other one and tends to include its own API. Since
neither the hardware nor the APIs are in any manner standardized, most
people that produce telephony applications do so for only a single vendor's
card family, and they do so using exclusively the vendor's supplied API. This
practice also means that any vendor in the computer telephony business has to
provide a very broad family of hardware because one could not substitute
easily other products to fit gaps in a product offering. All these things have
made it difficult for new telephony card vendors to come into existence and
easy for the limited vendors that do exist to maintain their markets without
much change.

This is not to say that no efforts were made to standardize APIs. After all, there
is the ECTF (European Community Telework/Telematics Forum). Being an
industry consortium of proprietary vendors, they would have to come up with,
through committees, a complicated set of standards and proposals for how
proprietary vendors could develop and maintain computer telephony solutions.
Furthermore, they would need to do so in ways that expand the need for
specialized knowledge, increasing the stranglehold of their existing members
on the computer telephony marketplace.

Another popular organization is the ITU (International Telecommunications
Union), best known for the fact that appointment often is handled by national
governments. In the US, for example, this is done as a political appointment by
the state department, rather than from among the best and brightest minds.

Our goal was not only to produce a telephony server as free software, but we
wanted also to make telephony application services as readily and easily
approachable as creating and administering a web site. We also wanted to
abstract the telephony driver and APIs to the point that they were both
irrelevant and invisible in the development of application services. Doing so
would mean anyone could substitute hardware as they wished, rather than
being locked into the offering of a single vendor.

First Came ACS

Since we wanted to abstract everything within the server at a low level, the first
thing we needed was a portable class foundation written in C++. I wanted to
use C++ for several reasons. First, it seemed natural to use class encapsulation
for the driver interfaces because of their abstract nature. Second, I found I
could write bug-free C++ code faster than I could write C code. In fact, this
would become my first large-scale C++ project.

Why we chose not to use an existing framework is also simple to explain. We
knew we needed threading, socket support and a few other elements. No single
existing framework did all these things except a few that were larger and more
complex than we needed. For example, we wanted a small footprint for a
telephony server. The most adaptable framework at the time was ACE
(Adaptive Communication Environment), which typically added several MBs of
core image for the runtime library. Since we were looking at running on
machines with as little as 8-12MBs of memory, this seemed an unacceptable
overhead.

GNU Common C++ (originally APE) was created to provide an easy-to-
comprehend and portable class abstraction for threads, sockets, semaphores,
exceptions and so on. APE has since grown and is now used as a foundation for
a number of projects in addition to being a part of GNU.

As to creating services themselves, we realized we needed a new way to create
telephony applications—one that would make the process approachable for
the average system administrator. For simplicity we choose to use a common
scripting language, which later became known as GNU ccScript. By writing
scripts and recording audio samples to create telephony application services,
virtually anyone could participate without needing specialized knowledge or
deep understanding of fantastically complex APIs like those promoted by the
ECTF. Because the underlying telephony hardware is both invisible and
abstracted away from the application scripting language, the cycle of
dependence on using a single card family is also broken.

But what form should this new scripting language take? Many extension
languages assume a separate execution instance (thread or process) for each
interpreter instance, making them unsuitable for our project. Many extension
languages assume expression parsing with nondeterministic runtime. An
expression could invoke recursive functions or entire subprograms, for
example. Again, we did not want to have a separate execution instance for each
interpreter instance, and we did not want to have each instance respond to the
leading edge of an event callback from the telephony driver as it steps through
a state machine, so none of the existing common solutions like Tcl, Perl, Guile,

etc., would immediately work for us. Instead, we created an entirely new
nonblocking and deterministic scripting engine for our first server.

Our scripting language is unique in several ways. First of all, it is step executed
and nonblocking. Statements can either execute and return immediately or
schedule their completion for a later time with the executive. This allows a
single thread to invoke and manage multiple interpreter instances. While a
telephony server can potentially support interactions with hundreds of
simultaneous telephone callers on high-density carrier scale hardware, we do
not require hundreds of native “thread” instances running in the server, and we
have a very modest CPU load.

Another way our scripting is unique is in support for memory-loaded scripts. To
avoid delay or blocking while loading scripts, all scripts are loaded and parsed
into a virtual machine (VM) structure in memory. When we wish to change
scripts, a brand new VM instance is created to contain these scripts. Calls
currently in progress continue under the old VM, and new callers are offered
the new VM. When the last old call terminates, then the entire old VM is
disposed of. This allows for 100% uptime, even while services are modified.

Finally, since we were building a C++ scripting system, we allowed direct class
extensions of the script interpreter as a means to add new script functionality.
This allows one to create a derived dialect specific to a given application or, if
needed, specific to a given telephony driver, simply by deriving it from the core
language through standard C++ class extension.

While the server scripting language can support the creation of complete
telephony applications, it was not designed to be a general-purpose
programming language or to integrate with external libraries the way
traditional languages do. Nonblocking requires that any module extensions
created for the server be highly customized. Instead, we wanted a general-
purpose way to create script extensions that could interact with databases or
other system resources. To that end we chose a model essentially similar to
how a web server did this when our ACS (Adjunct Communication Server)
Project was created.

The TGI model for our server is similar to how CGI works for a web server. In
TGI, a separate process is started, then is passed information on the phone
caller through environment variables. Environment variables rather than
command-line arguments are used to prevent snooping of transactions that
might include things such as credit-card information that could be visible with a
simple ps command.

The TGI process is tethered to the server through stdout and any output the
TGI application generates is used to invoke server commands. These
commands can do things like set return values, such as the result of a database
lookup, or they can do things like invoke new sessions to perform outbound
dialing. Rather than creating a gateway for each concurrent call session, a pool
of available processes are maintained for TGI gateways so it can be treated as a
restricted resource. It is assumed that gateway execution time represents a
small percentage of the total call time, so maintaining a small process pool
always available for quick TGI startup is efficient. This helps to prevent
stampeding if, say, all the callers hit a TGI at the same moment.

With these basic tools, it was possible to create interactive voice response
applications. As soon as it was functional, our first telephony server was used
commercially by Open Source Telecom and other companies. This wide
adoption was a result in part of how simple it is to create new application
services and to integrate telephony applications under this server with other
aspects of a commercial enterprise. As noted, the only requirements are some
skill in constructing a server-side script, the ability to play and record audio and
some knowledge of common tools like Perl.

A typical application for our server might look like the one shown in Listing 1
[available at ftp.linuxjournal.com/pub/lj/listings/issue100/6077.tgz], the playrec
script. This script demonstrates the different concepts in the current scripting
language, including symbol scope and event trapping, which, used under
named script references, form a chain of logic for processing an interactive
telephony application. In Listing 2 [available at ftp.linuxjournal.com/pub/lj/
listings/issue100/6077.tgz], we have an example of the server's use of Perl with
the TGI.pm module and the tgigetdbval.pl Perl script.

How ACS Became GNU Bayonne

As noted earlier, we achieved all these goals some two years ago with the first
of these telephony application servers, which as previously stated, which was
called Adjunct Communication Server or ACS, for short. Unfortunately, ACS
suffered from a name problem, and I received many letters from different
people pointing out that ACS was used by several other projects, including Al's
Circuit Simulator. Clearly this was a problem.

https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/6077.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/6077.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/100/6077.tgz

Bayonne Internals

At the same time, the ACS architecture was showing its limitations. First, it was
based on the idea of building a server directly bound to the telephony card,
much the way XFree86 3 bound the X server to a given family of video
hardware. This meant separate servers had to be compiled for each card
family, and a lot of code was being duplicated needlessly.

I chose to rewrite the entire core server from scratch, and this was completed
over a period of a few weeks. The first thing I did was create a concept for
supporting plugins, using a somewhat different idea from how most people
had done plugins in the past.

Typically, a plugin would be a small object file dynamically loaded with a known
symbol name or structure that could be found easily once the loaded file was
examined. Hence, one can use dlopen to open the plugin and dlsym to find a
known symbol, thereby calling functions within the plugin.

I came up with a different method: I made the new server export its own
dynamic symbols. The server then had a bunch of base classes with
constructors that would initialize a registration structure. The plugins were
written instead as C++ derived classes, where the base class was defined in the
server and had static objects for these derived classes. When the plugin was
loaded with dlopen, the constructors of these static objects would be invoked
automatically, and the base class references to the server image resolved
automatically. The base class held inside the server image would be invoked
from the constructor, and it would register the plugin object. Hence, a single
dlopen would both load the plugin and perform all initialization as a single
operation.

Furthermore, things that were part of ACS got spun off as separate packages.
This is when GNU ccScript and GNU ccAudio became separate class libraries, as
these represented the already useful scripting engine and audio processing
functionality found in ACS. In particular, we were looking at using the scripting
language in other servers that would be part of GNUCOMM.

GNU ccAudio has proven to be a useful general-purpose audio processing
library. It can be used to pregenerate single- and dual-frequency tones that can
be played later from memory, and it can assemble audio from multiple input
files into packed, fixed-sized frames with silence filling at the end, as is
commonly needed for feeding DSPs (digital signal processing). This feature
makes it a bit unique because other audio processing libraries typically do not
concern themselves with these issues. Ideally, I would like to extend GNU
ccAudio into a full, general-purpose audio processing framework that can also
be used to provide host-based DSP-like processing.

So we had a new server, only it lacked a name. Since we wanted something
distinct and unlikely to be used by someone else, we decided not to use yet
another acronym. Instead, since the server was essentially a bridge between
the computer and telephony world, it seemed natural to choose a bridge for a
metaphor. But what bridge?

There of course is the Brooklyn Bridge. But overused and having bad
connotations, it seemed a bad choice. Similarly, Golden Gate is extremely
overused and, in any case, associated with IBM's Java initiative. Tacoma
Narrows was a possibility, but considering it was famous for self-destructing,
we thought we would leave that one alone, perhaps for a proprietary vendor in
Washington.

There is a bridge not far from where we are in New Jersey: the Bayonne Bridge.
Virtually nobody has heard of it, and in any case, the name is little-used.

Today and Tomorrow

Summer 2002 marks the introduction of the 1.0 release of GNU Bayonne. At
present, GNU Bayonne is part of not only the GNU Project, but it has been
packaged and distributed as a standard part of several GNU/Linux
distributions, including GNU/Debian and Mandrake. In that we wish to make
telephony application services universally available to free software developers,
this is a positive development.

GNU Bayonne is widely used already in every part of the world. Users range
from commercial carriers in Russia to state and federal government agencies in
the US, and they include many enterprises that are looking for either

specialized telephony-enabled web services or a platform for enterprise
applications such as voice messaging.

GNU Bayonne does not exist alone but is part of a larger metaproject:
GNUCOMM. The goal of GNUCOMM is to provide telephony services for both
current and next-generation telephone networks using freely licensed software.
These services can be defined as 1) services that interact with desktop users,
such as address books that can dial phones and soft phone applications; 2)
services for telephone switching, such as the IPSwitch GNU Softswitch Project
and GNU oSIP proxy server; 3) services for gateways between current and next
generation telephone networks, such as troll, and proxies between firewalled
telephone networks such as Ogre; 4) real-time database transaction systems,
such as preViking Infotel and BayonneDB; and 5) voice application services,
such as those delivered through GNU Bayonne.

Even before GNU Bayonne 1.0 had been finalized, work started in late 2001 on
a successor to GNU Bayonne. This successor attempts to simplify many of the
architectural choices that were made early on in the project, with the hope of
making it easier to adapt and integrate GNU Bayonne in new ways. The choice
of design and much of the initial planning occurred during a two-day period
late in 2001, while I was in London meeting with the people who developed the
preViking telephony server. Some of these changes involved bringing the
preViking Project directly into GNU Bayonne development.

One of the biggest challenges in the current GNU Bayonne server is creating
telephony card plugins. These often involve the implementation of a complete
state machine for each and every driver, and often the code is duplicated. GNU
Bayonne 2 solves this by pushing the state machine into the core server and
making it fully abstract through C++ class extension. This allows drivers to be
simplified, but it also enables us to build multiple servers from a single code
base.

Another key difference in GNU Bayonne 2 is much more direct support for
carrier-grade Linux solutions. In particular, unlike its predecessor, this new
server can take ports in and out of service on a live server, allowing for cards to
be hot-plugged or hot-swapped. On a carrier-grade platform, the kernel will
provide notification of changeover events, and application services can listen
for and respond to these events. GNU Bayonne 2 is designed to support this
concept of notification for management of resources it is controlling.

Finally, GNU Bayonne 2 is designed from the ground up to take advantage of
XML in various ways. It uses a custom XML dialect as a configuration language.
It also acts as a web service with both the ability to request XML content that
describes the running state of GNU Bayonne services and the ability to support

XMLRPC. This fits into our vision for making telephony servers integrate with
web services, representing part of how we envision the project going forward.

David Sugar has been involved in developing free software over the last 20
years and is the principal author of a number of packages in the GNU Project,
including GNU Bayonne. David Sugar is a founder of Open Source Telecom and
chairs the DotGNU steering committee.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Kernel Locking Techniques

Robert Love

Issue #100, August 2002

Robert explains the various locking primitives in the Linux kernel, why you need
them and how kernel developers can use them to write safe code.

Proper locking can be tough—real tough. Improper locking can result in
random crashes and other oddities. Poorly designed locking can result in code
that is hard to read, performs poorly and makes your fellow kernel developers
cringe. In this article, I explain why kernel code requires locking, provide
general rules for proper kernel locking semantics and then outline the various
locking primitives in the Linux kernel.

Why Do We Need Locking in the Kernel?

The fundamental issue surrounding locking is the need to provide
synchronization in certain code paths in the kernel. These code paths, called
critical sections, require some combination of concurrency or re-entrancy
protection and proper ordering with respect to other events. The typical result
without proper locking is called a race condition. Realize how even a simple i++
is dangerous if i is shared! Consider the case where one processor reads i, then
another, then they both increment it, then they both write i back to memory. If i
were originally 2, it should now be 4, but in fact it would be 3!

This is not to say that the only locking issues arise from SMP (symmetric
multiprocessing). Interrupt handlers create locking issues, as does the new
preemptible kernel, and any code can block (go to sleep). Of these, only SMP is
considered true concurrency, i.e., only with SMP can two things actually occur
at the exact same time. The other situations—interrupt handlers, preempt-
kernel and blocking methods—provide pseudo concurrency as code is not
actually executed concurrently, but separate code can mangle one another's
data.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

These critical regions require locking. The Linux kernel provides a family of
locking primitives that developers can use to write safe and efficient code.

SMP Locks in a Uniprocessor Kernel

Whether or not you have an SMP machine, people who use your code may.
Further, code that does not handle locking issues properly is typically not
accepted into the Linux kernel. Finally, with a preemptible kernel even UP
(uniprocessor) systems require proper locking. Thus, do not forget: you must
implement locking.

Thankfully, Linus made the excellent design decision of keeping SMP and UP
kernels distinct. This allows certain locks not to exist at all in a UP kernel.
Different combinations of CONFIG_SMP and CONFIG_PREEMPT compile in
varying lock support. It does not matter, however, to the developer: lock
everything appropriately and all situations will be covered.

Atomic Operators

We cover atomic operators initially for two reasons. First, they are the simplest
of the approaches to kernel synchronization and thus the easiest to understand
and use. Second, the complex locking primitives are built off them. In this
sense, they are the building blocks of the kernel's locks. Atomic operators are
operations, like add and subtract, which perform in one uninterruptible
operation. Consider the previous example of i++. If we could read i, increment it
and write it back to memory in one uninterruptible operation, the race
condition discussed above would not be an issue. Atomic operators provide
these uninterruptible operations. Two types exist: methods that operate on
integers and methods that operate on bits. The integer operations work like
this:

atomic_t v;
atomic_set(&v, 5); /* v = 5 (atomically) */
atomic_add(3, &v); /* v = v + 3 (atomically) */
atomic_dec(&v); /* v = v - 1 (atomically) */
printf("This will print 7: %d\n", atomic_read(&v));

They are simple. There are, however, little caveats to keep in mind when using
atomics. First, you obviously cannot pass an atomic_t to anything but one of the
atomic operators. Likewise, you cannot pass anything to an atomic operator
except an atomic_t. Finally, because of the limitations of some architectures, do
not expect atomic_t to have more than 24 usable bits. See the “Function
Reference” Sidebar for a list of all atomic integer operations.

Function Reference

https://secure2.linuxjournal.com/ljarchive/LJ/100/5833s1.html

The next group of atomic methods is those that operate on individual bits. They
are simpler than the integer methods because they work on the standard C
data types. For example, consider void set_bit(int nr, void *addr). This function
will atomically set to 1 the “nr-th” bit of the data pointed to by addr. The atomic
bit operators are also listed in the “Function Reference” Sidebar.

Spinlocks

For anything more complicated than trivial examples like those above, a more
complete locking solution is needed. The most common locking primitive in the
kernel is the spinlock, defined in include/asm/spinlock.h and include/linux/
spinlock.h. The spinlock is a very simple single-holder lock. If a process
attempts to acquire a spinlock and it is unavailable, the process will keep trying
(spinning) until it can acquire the lock. This simplicity creates a small and fast
lock. The basic use of the spinlock is:

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;
unsigned long flags;
spin_lock_irqsave(&mr_lock, flags);
/* critical section ... */
spin_unlock_irqrestore(&mr_lock, flags);

The use of spin_lock_irqsave() will disable interrupts locally and provide the
spinlock on SMP. This covers both interrupt and SMP concurrency issues. With
a call to spin_unlock_irqrestore(), interrupts are restored to the state when the
lock was acquired. With a UP kernel, the above code compiles to the same as:

unsigned long flags;
save_flags(flags);
cli();
/* critical section ... */
restore_flags(flags);

which will provide the needed interrupt concurrency protection without
unneeded SMP protection. Another variant of the spinlock is spin_lock_irq().
This variant disables and re-enables interrupts unconditionally, in the same
manner as cli() and sti(). For example:

spinlock_t mr_lock = SPIN_LOCK_UNLOCKED;
spin_lock_irq(&mr_lock);
/* critical section ... */
spin_unlock_irq(&mr_lock);

This code is only safe when you know that interrupts were not already disabled
before the acquisition of the lock. As the kernel grows in size and kernel code
paths become increasingly hard to predict, it is suggested you not use this
version unless you really know what you are doing.

All of the above spinlocks assume the data you are protecting is accessed in
both interrupt handlers and normal kernel code. If you know your data is
unique to user-context kernel code (e.g., a system call), you can use the basic

spin_lock() and spin_unlock() methods that acquire and release the specified
lock without any interaction with interrupts.

A final variation of the spinlock is spin_lock_bh() that implements the standard
spinlock as well as disables softirqs. This is needed when you have code outside
a softirq that is also used inside a softirq. The corresponding unlock function is
naturally spin_unlock_bh().

Note that spinlocks in Linux are not recursive as they may be in other operating
systems. Most consider this a sane design decision as recursive spinlocks
encourage poor code. This does imply, however, that you must be careful not
to re-acquire a spinlock you already hold, or you will deadlock.

Spinlocks should be used to lock data in situations where the lock is not held
for a long time—recall that a waiting process will spin, doing nothing, waiting
for the lock. (See the “Rules” Sidebar for guidelines on what is considered a long
time.) Thankfully, spinlocks can be used anywhere. You cannot, however, do
anything that will sleep while holding a spinlock. For example, never call any
function that touches user memory, kmalloc() with the GFP_KERNEL flag, any
semaphore functions or any of the schedule functions while holding a spinlock.
You have been warned.

If you need a lock that is safe to hold for longer periods of time, safe to sleep
with or capable of allowing concurrency to do more than one process at a time,
Linux provides the semaphore.

Semaphores

Semaphores in Linux are sleeping locks. Because they cause a task to sleep on
contention, instead of spin, they are used in situations where the lock-held time
may be long. Conversely, since they have the overhead of putting a task to
sleep and subsequently waking it up, they should not be used where the lock-
held time is short. Since they sleep, however, they can be used to synchronize
user contexts whereas spinlocks cannot. In other words, it is safe to block while
holding a semaphore.

In Linux, semaphores are represented by a structure, struct semaphore, which
is defined in include/asm/semaphore.h. The structure contains a pointer to a
wait queue and a usage count. The wait queue is a list of processes blocking on
the semaphore. The usage count is the number of concurrently allowed
holders. If it is negative, the semaphore is unavailable and the absolute value of
the usage count is the number of processes blocked on the wait queue. The
usage count is initialized at runtime via sema_init(), typically to 1 (in which case
the semaphore is called a mutex).

Semaphores are manipulated via two methods: down (historically P) and up
(historically V). The former attempts to acquire the semaphore and blocks if it
fails. The later releases the semaphore, waking up any tasks blocked along the
way.

Semaphore use is simple in Linux. To attempt to acquire a semaphore, call the
down_interruptible() function. This function decrements the usage count of the
semaphore. If the new value is less than zero, the calling process is added to
the wait queue and blocked. If the new value is zero or greater, the process
obtains the semaphore and the call returns 0. If a signal is received while
blocking, the call returns -EINTR and the semaphore is not acquired.

The up() function, used to release a semaphore, increments the usage count. If
the new value is greater than or equal to zero, one or more tasks on the wait
queue will be woken up:

struct semaphore mr_sem;
sema_init(&mr_sem, 1); /* usage count is 1 */
if (down_interruptible(&mr_sem))
 /* semaphore not acquired; received a signal ... */
/* critical region (semaphore acquired) ... */
up(&mr_sem);

The Linux kernel also provides the down() function, which differs in that it puts
the calling task into an uninterruptible sleep. A signal received by a process
blocked in uninterruptible sleep is ignored. Typically, developers want to use
down_interruptible(). Finally, Linux provides the down_trylock() function, which
attempts to acquire the given semaphore. If the call fails, down_trylock() will
return nonzero instead of blocking.

Reader/Writer Locks

In addition to the standard spinlock and semaphore implementations, the
Linux kernel provides reader/writer variants that divide lock usage into two
groups: reading and writing. Since it is typically safe for multiple threads to read
data concurrently, so long as nothing modifies the data, reader/writer locks
allow multiple concurrent readers but only a single writer (with no concurrent
readers). If your data access naturally divides into clear reading and writing
patterns, especially with a greater amount of reading than writing, the reader/
writer locks are often preferred.

The reader/writer spinlock is called an rwlock and is used similarly to the
standard spinlock, with the exception of separate reader/writer locking:

rwlock_t mr_rwlock = RW_LOCK_UNLOCKED;
read_lock(&mr_rwlock);
/* critical section (read only) ... */
read_unlock(&mr_rwlock);
write_lock(&mr_rwlock);

/* critical section (read and write) ... */
write_unlock(&mr_rwlock);

Likewise, the reader/writer semaphore is called an rw_semaphore and use is
identical to the standard semaphore, plus the explicit reader/writer locking:

struct rw_semaphore mr_rwsem;
init_rwsem(&mr_rwsem);
down_read(&mr_rwsem);
/* critical region (read only) ... */
up_read(&mr_rwsem);
down_write(&mr_rwsem);
/* critical region (read and write) ... */
up_write(&mr_rwsem);

Use of reader/writer locks, where appropriate, is an appreciable optimization.
Note, however, that unlike other implementations reader locks cannot be
automatically upgraded to the writer variant. Therefore, attempting to acquire
exclusive access while holding reader access will deadlock. Typically, if you
know you will need to write eventually, obtain the writer variant of the lock
from the beginning. Otherwise, you will need to release the reader lock and re-
acquire the lock as a writer. If the distinction between code that writes and
reads is muddled such as this, it may be indicative that reader/writer locks are
not the best choice.

Big-Reader Locks

Big-reader locks (brlocks), defined in include/linux/brlock.h, are a specialized
form of reader/writer locks. Big-reader locks, designed by Red Hat's Ingo
Molnar, provide a spinning lock that is very fast to acquire for reading but
incredibly slow to acquire for writing. Therefore, they are ideal in situations
where there are many readers and few writers.

While the behavior of brlocks is different from that of rwlocks, their usage is
identical with the lone exception that brlocks are predefined in brlock_indices
(see brlock.h):

br_read_lock(BR_MR_LOCK);
/* critical region (read only) ... */
br_read_unlock(BR_MR_LOCK);

Use of brlocks is currently confined to a few special cases. Due to the large
penalty for exclusive write access, it should probably stay that way.

The Big Kernel Lock

Linux contains a global kernel lock, kernel_flag, that was originally introduced in
kernel 2.0 as the only SMP lock. During 2.2 and 2.4, much work went into
removing the global lock from the kernel and replacing it with finer-grained
localized locks. Today, the global lock's use is minimal. It still exists, however,
and developers need to be aware of it.

The global kernel lock is called the big kernel lock or BKL. It is a spinning lock
that is recursive; therefore two consecutive requests for it will not deadlock the
process (as they would for a spinlock). Further, a process can sleep and even
enter the scheduler while holding the BKL. When a process holding the BKL
enters the scheduler, the lock is dropped so other processes can obtain it.
These attributes of the BKL helped ease the introduction of SMP during the 2.0
kernel series. Today, however, they should provide plenty of reason not to use
the lock.

Use of the big kernel lock is simple. Call lock_kernel() to acquire the lock and
unlock_kernel() to release it. The routine kernel_locked() will return nonzero if
the lock is held, zero if not. For example:

lock_kernel();
/* critical region ... */
unlock_kernel();

Preemption Control

Starting with the 2.5 development kernel (and 2.4 with an available patch), the
Linux kernel is fully preemptible. This feature allows processes to be
preempted by higher-priority processes, even if the current process is running
in the kernel. A preemptible kernel creates many of the synchronization issues
of SMP. Thankfully, kernel preemption is synchronized by SMP locks, so most
issues are solved automatically by writing SMP-safe code. A few new locking
issues, however, are introduced. For example, a lock may not protect per-CPU
data because it is implicitly locked (it is safe because it is unique to each CPU)
but is needed with kernel preemption.

For these situations, preempt_disable() and the corresponding
preempt_enable() have been introduced. These methods are nestable such that
for each n preempt_disable() calls, preemption will not be re-enabled until the
nth preempt_enable() call. See the “Function Reference” Sidebar for a complete
list of preemption-related controls.

Conclusion

Both SMP reliability and scalability in the Linux kernel are improving rapidly.
Since SMP was introduced in the 2.0 kernel, each successive kernel revision has
improved on the previous by implementing new locking primitives and
providing smarter locking semantics by revising locking rules and eliminating
global locks in areas of high contention. This trend continues in the 2.5 kernel.
The future will certainly hold better performance.

Kernel developers should do their part by writing code that implements smart,
sane, proper locking with an eye to both scalability and reliability.

Rules

Robert Love (rml@tech9.net) is a Computer Science and Mathematics student
at the University of Florida and a kernel engineer at MontaVista Software.
Robert is the maintainer of the preemptible kernel and is involved in various
other kernel development projects. He loves Jack Handy books and Less than
Jake.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5833s2.html
mailto:rml@tech9.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

At the Forge: Why Linux?

Reuven M. Lerner

Issue #100, August 2002

Reuven steps back this month and offers an overview of Linux's progression in
business.

Break out the champagne! This month, Linux Journal is celebrating its 100th
issue, and I've decided to take a break from my exploration of open-source
web/database technologies to join the party.

There are plenty of good reasons for Linux users (and advocates of open-
source software in general) to be happy. Despite the downturn in the high-tech
economy, open-source software development continues at an extremely rapid
pace. When Linux Journal was first published, few people had ever heard of the
free operating system created by a Finnish student. Nowadays, many people
have heard of Linux, even if they don't understand what it is or what it can do
for them.

Indeed, while many of my clients know that I push for open-source solutions,
they are always curious to know why I favor them and, more importantly, why
choosing such solutions is in their interest as well. So at the risk of preaching to
the converted, this month's column reviews some of the reasons why Linux is
such an excellent platform for building server-side applications. I hope some of
the ideas I put forth here will help you evangelize free software solutions with
your own colleagues and clients in the years to come.

Cost and Stability

Hackers are interested in technologies and tools that teach new skills and
perspectives. But in the real world, people are interested in getting their jobs
done as quickly and cheaply as possible. Software is a means to an end, rather
than an end in and of itself.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For this reason, I've found that the best way to sell people on open-source
software is to say that it does more and costs less. Either one of these factors
isn't enough by itself; it's easy to find expensive, high-quality software and
useless to install cheap, poor-quality software. As consumers, my clients are
always eager to get more for less, and free software appeals to them in this
way.

When I pitch solutions to my clients, I begin by explaining that I'm offering them
something they might have thought impossible: inexpensive software that does
what they want, without crashing. When I explain to Windows users that I have
yet to see a Linux system crash in over six years of running dozens of systems,
they are shocked and incredulous. When I tell them that this software is freely
available on the Internet, they find it even harder to believe.

My clients often wonder who is supporting the software and what happens if
things go wrong. They are relieved to hear that not only can I offer them the
support they need but that they can look for support elsewhere if they don't
approve of my work. This, of course, contrasts sharply with the attitude and
restrictions that many consulting firms impose on software installations. The
open-source approach is thus friendlier to consumers than the traditional
software model, reducing costs and encouraging competition.

Of course, not all free software is of high quality, and not all consultants really
know what they're doing. The community development process can produce
excellent results, but that doesn't mean everything released on the Internet is
guaranteed to be safe and stable. Indeed, it's clear that many programs,
including some popular ones, were uploaded without undergoing any testing.
Programs like these give the entire Open Source community a bad name and
often do more harm than good. Several times per year, clients call me in to fix a
program they have downloaded that worked fine at first, but eventually proved
itself to be insecure, unstable or full of bugs.

Fixing Bugs

Even if you find that your server depends on a bug-ridden, insecure, open-
source application, all is not lost. That's because the nature of free software
ensures that you can modify it to suit your needs or fix it when problems arise.
In this way, shared-source licenses, which allow users to view the source code
but not to modify or fix it, miss the point. Buying a house or a car entitles you to
fix it on your own; why should software be any different?

True, the shared-source license does mean that more people will look over the
code, so security and stability problems will be identified and fixed more
quickly. But being able to read the source code isn't nearly as important as
being able to improve it. Moreover, folding these improvements back into the

community version means that everyone else will benefit from your
adjustments and be able to make further improvements. Thus, contributing to
the community process is in the interest of everyone who uses open-source
software; it's not simply a nice thing to do.

Because I tend to use mature tools such as Linux, Apache, Perl and Python, it's
relatively rare for me to find bugs in the software I download. But several times
per year, I will discover a problem or limitation in the software I use. Having
access to the source code guarantees that I can get up and running as quickly
as possible, and it also means that others will not have to suffer through the
bugs that I've fixed.

It's ironic that I can still use this argument today, given that a similar problem
with printer drivers was what drove Richard Stallman to found the Free
Software Foundation, whose GNU Project has been crucial to the success of
Linux and free software. It's also amazing to discover how quickly we get used
to having the source available and to being able to inspect or modify every part
of our computer systems.

Along the same lines, Linux systems tend to come with “batteries included”, to
borrow a phrase from the Python world. I recently began work on a project that
will be deployed on Solaris, and I soon remembered how much richer and
better-stocked a typical Linux distribution is when compared with a standard
Solaris installation. True, I can spend half a day downloading and installing gcc,
Perl, Python and the rest. But after years in which gcc was available on every
machine I ran, it felt like I had been thrown back into the Dark Ages of UNIX.

No Secrets

Engineers are notoriously bad at keeping secrets, as Scott Adams has
occasionally pointed out in his Dilbert comics. Indeed, one of the things that
attracts me to open-source software is the fact that there are no secrets.
Clients hire me because they want to save themselves time or because they
lack expertise in a particular area, not because they are forced to do so. For this
reason, I tend to think of myself as analogous to a lawyer or accountant, both
of whom offer advice and documents based on freely available information.

This “no secrets” philosophy tends to work well with my clients, including those
who aren't at all interested in knowing how the software works. They know they
can ask me questions, and I'll give them the best answer I can, without having
to hide behind marketing hype, mandatory updates or double-talk. My
technical clients, of course, enjoy knowing they can dive into the code or read
the documentation; the only thing stopping them from knowing what I know is
time and experience.

My nonprofit clients, who are in many ways the perfect audience for open-
source software, are often excited by the possibility of using such tools. In
particular, I have found that educational institutions like the idea of sharing
information and community involvement, in software as in other spheres of
life. Telling them they can both save money and participate in a community of
like-minded people is a powerful combination. Moreover, nonprofits typically
have little incentive to keep changes within the company, meaning that they
can more easily participate in the Open Source community.

High-Quality Toolkits

When I first began to write this column for Linux Journal, most server-side web
applications were handwritten CGI programs. A huge number of web sites still
use such programs. But as the Web has become more sophisticated, people
have demanded toolkits that make it easier to develop high-quality, scalable
web applications in a short amount of time. It shouldn't come as any surprise
that many proprietary software companies have come to fill this void. It is
shocking, however, to find out how much money they want for their software—
sold on the condition that their consultants are hired to customize it, followed
by a mandatory service contract.

Luckily, the open-source world has responded. A number of open-source
toolkits can be used for creating sophisticated server-side applications. Zope, as
we have seen in recent months, is a fantastic (if complicated) application server,
making it possible to create web applications that connect to databases and
other information sources. Next month, we'll begin to look at OpenACS,
designed to make on-line community systems easy to build and modify.
Furthermore, such environments as mod_perl, Mason and the numerous Java-
and XML-related tools sponsored by the Apache Software Foundation
increasingly mean that locating the right tool can be as difficult as installing and
using it.

But as wonderful as these toolkits are, we must remember that not everyone
will be won over. My harshest lesson on this front came last year when a
potential client decided against hiring me to create a simple content
management system for producing a product catalog for the Web. I was told
that my bid came in at $800,000 less than my closest competitor. However,
because I was using open-source software and the competition was a well-
known name in the world of content management, I lost out. (That client has
had a round of layoffs and quarterly losses since then, and their web site still
appears to be managed by hand, so at least I won a moral victory of sorts.)

We should also remember that not every player in the open-source sphere can
be trusted to follow through on their promises to the community. Many open-

source advocates were surprised and disappointed when Lutris pulled the plug
on its open-source Enhydra Enterprise Java application server last year, turning
it into a proprietary product. Luckily, there are alternatives; not only has the
GPL-licensed JBoss application server dramatically grown in popularity over the
last year, but Sun recently made it clear that nonprofit, open-source J2EE
implementations will be able to receive official certification in the coming
months. This should help to reduce further the stigma that some businesses
associate with open-source software.

But even if you suffer setbacks, don't be fooled: as IBM, HP and even Sun now
acknowledge, Linux and open-source software are powerful, stable and should
be taken seriously. “World domination” hasn't yet arrived, but brand-name
recognition, financial realities and admiration from academics and commercial
entities alike are helping us move ahead.

Happy Birthday!

I'll conclude this column with a salute to the hardworking staff that makes this
magazine possible. I read Linux Journal for nearly a year before starting to write
this column, and I continue to read it when it comes in the mail every month.
The articles consistently reflect the diversity, sophistication and interests of
some of the most creative software developers on the planet.

The fact that Linux Journal has now reached 100 issues should prove, beyond a
shadow of a doubt, that Linux and open-source software are here to stay. I
hope to write a similar article when the 200th anniversary issue comes around.

email: reuven@lerner.co.il

Reuven M. Lerner is a consultant specializing in web/database applications and
open-source software. His book, Core Perl, was published in January 2002 by
Prentice Hall. Reuven lives in Modi'in, Israel, with his wife and daughter.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:reuven@lerner.co.il
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Cooking with Linux: Strike up the Band and Celebrate!

Marcel Gagné

Issue #100, August 2002

Marcel introduces two media players, XMMS and KDE's Media Player, and
shows how to dress them up with skins.

It is good to see you again François, mon ami. I trust that you took good care of
the restaurant while I was away on my whirlwind tour of Europe, non? Well,
thank you for asking, mon ami. It was indeed, a fine journey. Oui, the food was
great as well, but no restaurant is blessed with such a waiter as yourself.

I have seen cities of lights and cities of music—London, Salzburg, Rome,
Florence and many others. Then, of course, there was the ultimate city of lights,
Paris. It seems somehow fitting that it is in this atmosphere of celebration that I
had to prepare the menu for Linux Journal's special 100th anniversary issue.
Mais oui, François, what better way to celebrate than with music and light?
Quickly before our guests arrive, head down to the cellar and bring up the 1989
Pessac-Léognan.

But our guests are already here. François. Vite! Please, mes amis, sit and make
yourselves comfortable. Today's menu of fine Linux cuisine is a bit of an
occasion. Linux Journal is 100 issues old—a fine vintage indeed. Have a look at
the first item on the menu, a little something called XMMS. Basically a standard
Linux media player, XMMS is much more than a music player. Properly used, it
is a spectacular light show as well. It supports Ogg Vorbis, MP3 and WAV
formats. With the right extensions you also can use it to play RealAudio.

Every major Linux distribution comes with XMMS, so you don't have to go far to
find it. If it isn't already part of the installation, then have a look on your
distribution CD-ROM. If all else fails, go to the source at www.xmms.org for the
latest and greatest.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.xmms.org

Building XMMS is easy and follows familiar steps. The current version is based
on GTK 1.2.2 or better, and you may need the OpenGL or Mesa libraries if you
want to use the OpenGL plugin (more on that later). Starting with the source,
here is what we do:

tar -xzvf xmms-1.2.7.tar.gz
cd xmms-1.2.7
./configure
make
su -c "make install"

To start the program, type xmms & and press the Enter key. If this is the first
time you start XMMS, you'll see something that looks like the amplifier on your
home stereo system (Figure 1).

Figure 1. Your Basic XMMS

That is only the first module. Look at the buttons on the right of the amplifier.
You'll see one labeled EQ (the equalizer) and PL (the playlist). Clicking these
buttons will bring up two additional modules for your stereo system. Because
each of the three modules can be moved about individually on the screen, you
may find yourself re-adjusting their position more often than you care to. The
easy way to solve this is by right clicking on the amp module, choosing Options
from the menu and then choosing Easy Move. There's a Ctrl-E keyboard
shortcut as well.

XMMS has extensive plugin support for input, output and visualization. To get
at these, use the Preferences menu (the shortcut is Ctrl-P). A new window will
pop up offering you tabs for various runtime options, fonts and so on. This is
also where you find the control for the various audio I/O, special effects and
visualization plugins. If you find you are having any problems with sound when
you first start up XMMS, this is the place to look. Look under the audio section
and check the output plugin. Having built my XMMS from scratch, I had to set
the output plugin to OSS Driver.

I could spend a great deal of time talking about the various options, but
instead, I invite you to check out the various options on your own. In terms of
visualization plugins, this is where the light show begins. You'll notice that there
are things like Spectrum Analyzer and Blur Scope. Earlier on, I mentioned the
OpenGL Spectrum Analyzer, another cool plugin that provides colorful 3-D

visuals to accompany your music—you can even launch that one full screen; sit
back and enjoy the show.

One of my favorite features of XMMS (and there are quite a few) is its
skinability. Using skins, I can change XMMS' look from its default black metal
face to something more classic, like cherry wood or a refined brushed
aluminum. Using the Ctrl-S shortcut brings up the Skin Browser, which you can
also select through the right-click menu. Of course, if you just finished installing
XMMS, you probably won't see anything there. You need to get yourself some
skins. For that, head back to the XMMS web site and click Skins on the menu. I
guarantee you won't be getting bored anytime soon. There are literally tons of
skins available, including the aforementioned cherry-wood finish.

So, how do you install these skins? All of the skins on the web site are in tar.gz
format. Find one that appeals to you, download it and save it to your
$HOME/.xmms/Skins directory. You don't need to extract the file—just save it
to the directory. If I turn out to be wrong, and you do get bored with the list on
www.xmms.org, you'll be happy to know that XMMS supports Winamp skins as
well. A visit to www.winamp.com should keep you more than busy. Just click
Skins off the menu and have fun. In Figure 2, you'll see my classic cherry-wood
XMMS system with various light-show plugins running.

Figure 2. The XMMS Visualization Light Show

I'm going to leave XMMS behind on this topic of skins because the next
application does skins in a great way as well. If you are running KDE, you have a
great little program called Media Player. You can access the program either by

http://www.xmms.org
http://www.winamp.com

looking under the K menu, choosing Multimedia, then clicking on the KDE
Media Player, or you can type noatun & at the command line. The problem is
that when you fire it up for the first time, it tends to look a little boring, as in
Figure 3.

Figure 3. The KDE Media Player (Default Skin)

Don't let that disappoint you. That is the default skin, named “Excellent”. Click
on Settings followed by Configure Noatun. From the pop-up menu that
appears, choose Plugins, which will then give you a tabbed menu. Under
Interfaces, you'll see four options for player styles. The skinnable styles are K-
Jofol and Kaiman. In both cases, you can find additional skins on the KDE-Look
web site at www.kde-look.org. Actually, mes amis, this is a great site to visit for
numerous ways to dress up your KDE environment, from Noatun skins to
desktop themes to replacement icon sets.

Start by clicking off the “Excellent” interface and clicking on the K-Jofol interface.
You'll see the menubar at the left change. It now shows a K-Jofol Skins option.
The same would happen with the Kaiman interface. If you click on this menu
option, you'll see a drop-down list on the right with a preview of the various
installed skins. For Noatun, skins live under the $HOME/.kde/share/apps/
noatun/skins directory.

To add new skins, switch to that directory, extract the skins you downloaded
from www.kde-look.org, and you have just added a new skin. There is a catch,
however. Unlike XMMS, the skins must be in PNG format and must be extracted
into the skins directory. You can use skins you find on other sites, but you need
to convert the JPG images to PNG. Luckily, this is extremely easy with the
convert command (part of the ImageMagick package):

convert image.bmp image.jpg

That information is for KDE 2.x only. With KDE 3.x, you'll find that things are a
little different. In the $HOME/.kde/share/apps/noatun/skins directory, you will
find two other directories called winamp and kaiman. If they don't already exist,

http://www.kde-look.org
http://www.kde-look.org

create them. Then, in the winamp directory, extract any of the XMMS skins that
you find appealing. For instance, let's go back to my cherry-wood example:

cd $HOME/.kde/share/apps/noatun/skins/winamp
tar -xzvf /path_to/cherrywood.tar.gz

Now, when you click Configure Noatun, you should see this new skin under the
Winskin list on the preferences menu.

When I told you about XMMS, I mentioned the variety of cool plugins you could
use for visualization. KDE's Media Player, Noatun, has these as well. Among my
favorites are Tyler and Blur Scope. Try some of these out for yourself, but be
warned. The one called Madness is truly madness. Don't try it unless you are
looking for a glimpse of temporary insanity. You have been warned! For a
sample of various plugins in action, have a look at Figure 4.

Figure 4. The KDE Noatun Light Show

Turn up that volume control, mes amis, or should I say “Crank it!”? François
(who has managed to arrange a cameo in this very issue, see page 25) will refill
your glasses. Tonight, the cellar is open and you may have anything you desire!
Let the music play and the lights dance. It is time to celebrate!

Until next month. A votre santé! Bon appétit!

Resources

https://secure2.linuxjournal.com/ljarchive/LJ/100/6083s1.html

Marcel Gagné lives in Mississauga, Ontario. He is the author of Linux System
Administration: A User's Guide (ISBN 0-201-71934-7), published by Addison-
Wesley (and is currently at work on his next book). He can be reached via e-mail
at mggagne@salmar.com. You can discover lots of other things (including great
Wine links) from his web site at www.marcelgagne.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:mggagne@salmar.com
http://www.marcelgagne.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin: Using iptables for Local Security

Mick Bauer

Issue #100, August 2002

Mick explains how to use the owner match extension for iptables to prevent
local users from violating your network's security protocols.

Most of us think of iptables strictly as a firewall tool for keeping remote
attackers at bay. But did you know it also can be used to keep local users in
line? The experimental match extension owner adds new iptables options that
can be used to help prevent local users from sending packets through other
local users' network processes.

For example, suppose one of root's cron jobs uses Stunnel to send files to a
remote rsync process. While that tunnel is open, any local user also may use it
to access the remote rsync server. iptables can help you prevent such
sponging; this month's column shows how.

The Problem

Tunneling utilities comprise one of the most important new categories of
security tools at our disposal. They allow us to wrap insecure services, such as
Telnet, IMAP and POP3, in encrypted virtual “tunnels”, transparently and
effectively. I've written at length in these pages about the Secure Shell and its
powerful port-forwarding capabilities; Stunnel and SSLWrap are similar free
tools that can be used for this purpose under Linux.

But what happens when you set up such a tunnel on a multi-user system?
What's to stop unauthorized local users from sending their own traffic through
the tunnel? Until recently, practically nothing. Since most tunneling utilities
work by creating a new local listener (e.g., localhost:992) for the near side of the
tunnel, and since normally any local user can connect to a local listening-port,
it's usually up to the server application at the other end of the tunnel to
authenticate users.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

For example, suppose I use Stunnel to create a secure sockets layer (SSL) tunnel
from my local system “crueller” to the remote system “strudel”, over which I'm
going to run Telnet. (Never mind that this sort of transaction is simpler with
SSH; maybe I don't want SSH installed locally for some reason.) On the remote
host, which is already running the Telnet dæmon (via inetd) on TCP port 23, I
run Stunnel in dæmon mode with this command:

stunnel -d 992 -r localhost:23 -p \
/etc/stunnel/strudel.pem

On the local host, I'll run Stunnel in client mode, also listening on the local port
TCP 992 but forwarding connections to TCP port 992 on strudel:

stunnel -c -d 992 -r strudel:992

If you've never used Stunnel before and these two commands mean nothing to
you, don't worry. The important thing to understand is that to use this example
tunnel to Telnet securely from crueller to strudel, I'll use this command on
crueller:

telnet localhost 992

At this point, I'll be prompted for a user name and password by strudel, and
unlike with normal Telnet, my login credentials will be encrypted by Stunnel
rather than transmitted over the network as clear text. (The remote Stunnel
process will decrypt the packets and hand them to strudel's local Telnet
process. This happens for the entire Telnet transaction, not just the
authentication part; Stunnel acts as a middleman for both parties during the
entire transaction, a middleman who neither knows nor cares what he's
tunneling as long as it's TCP.)

So far so good; I've got encryption, which I didn't have without Stunnel, and I've
got a modest amount of authentication by virtue of Telnet itself. The problem is
that any user on crueller can Telnet to the local Stunnel listener on TCP 992 and
try to log in to strudel. Maybe I'm worried about someone guessing my strudel
password and maybe I'm not; but how to stop them from sending any packets
down the tunnel to begin with? With iptables and its new owner match
extension, that's how.

Stunnel Who?

https://secure2.linuxjournal.com/ljarchive/LJ/100/6091s1.html

The Tool

iptables' owner match extension adds four match criteria to the iptables
command:

• —uid-owner UID: matches packets generated by a process whose user ID
is UID.

• —gid-owner GID: matches packets generated by a process whose group
ID is GID.

• —pid-owner PID: matches packets generated by a process whose process
ID is PID.

• —sid-owner SID: matches packets generated by a process whose session
ID is SID.

Of these four, the first two are the most useful for our purposes here.

The owner match extension isn't necessarily included in your distribution's
stock kernel; it's considered an experimental feature (by the Linux kernel team,
not necessarily by the iptables team), so you may need to compile it yourself.
Its source code, however, is part of the standard 2.4 kernel codebase, so this is
done easily with any recent version of your distribution's (2.4.x) kernel source
package.

When recompiling your kernel, you'll need to set several things explicitly. First,
under Code maturity level options, select “Prompt for development and/or
incomplete code/drivers”.

Next, in addition to the other network protocols and features you customarily
select in Networking options, make sure to select “Network Packet Filtering”.
This will enable the subgroup IP: Netfilter Configuration, shown in Figure 1. You
may compile these options either into the kernel (by selecting them with an
asterisk) or as modules (with an M), but most people compile them as modules
because all are seldom used at one time.

Figure 1. Compiling a Kernel with owner Match Extension Support

Naturally you can select as many of the Netfilter modules as you like. They
don't take up much disk space, and if compiled as modules they needn't be
loaded unless necessary. The one we're most concerned with right now,
though, is owner Match Support.

The rest of the procedure for compiling and installing the Linux kernel and its
modules is well documented elsewhere (notably in the kernel source's own
README file). Once you've compiled, installed and rebooted with your kernel,
you can use your shiny new owner module, which will be named ipt_owner.

To load this module, use the modprobe command:

modprobe ipt_owner

In practice you'll probably want to load your iptables rules from a startup script
in /etc/inet.d. If so, make sure you add the above modprobe line to the
beginning of this script (i.e., above any iptables commands that use owner
matches).

Note: neither Bastille-Linux's automated firewall configuration functionality nor
SuSE Linux's SuSEfirewall scripts support owner matching without major
hacking. This should hardly be surprising; they and other simple packet-filter

rule generators are intended primarily for low-impact internet protection, not
for the advanced control of local user access. For the latter, you need to write
your own iptables rules.

Let's return to our example Stunnel client, crueller. Suppose crueller's kernel
has been compiled with the ipt_owner module. You've loaded this module with
modprobe and, for the time being, iptables isn't configured, i.e., nothing's being
filtered yet.

Suppose further that you wish to restrict use of the Telnet-over-Stunnel socket
we considered at the beginning of the article to root only. (You may recall we
set up a Stunnel listener on crueller at TCP port 992, which encrypts and
forwards packets to the same TCP port on strudel.)

If crueller isn't a firewall, we may be able to get away with an accept-by-default
policy for the OUTPUT chain. On firewalls, all chains should have a drop-by-
default or reject-by-default policy, but single-homed (single-network-interface)
bastion hosts may sometimes have a more permissive stance on outbound
traffic. If this is the case on crueller, then we need only one filtering rule to
achieve the desired restriction:

iptables -A OUTPUT -p tcp --dport 992 -d localhost \
-m owner ! --uid-owner root -j REJECT

Let's dissect that command line one field at a time:

• -A OUTPUT: tells iptables we want to add a rule at the end of the chain
OUTPUT. Since owner matches apply only to packets originating locally,
and since outbound traffic is handled in the OUTPUT chain, this is the only
chain in which you can use owner matches.

• -p tcp: tells iptables to match only TCP packets and to load iptables' TCP
options.

• —dport 992: this TCP-specific option tells iptables to match only TCP
packets destined for port 992.

• -d localhost: tells iptables to match packets destined for the localhost (i.e.,
the loopback interface 127.0.0.1).

• -m owner: tells iptables to load the owner match extension.
• ! --uid-owner root: tells iptables to match only packets not created by

processes owned by root.
• -j REJECT: tells iptables to reject packets that meet all match expressions in

this line.

In summary, this rule tells the kernel (via iptables) to drop packets sent to the
local TCP port 992 unless they're sent by one of root's processes.

Suppose now that crueller has the more cautious default OUTPUT policy of
DROP rather than ACCEPT. A drop-by-default policy is preferable on most
iptables installations; the Principle of Least Privilege is one of the most
important concepts in information security (i.e., “that which is not explicitly
permitted must be denied”).

Now, however, we'll need a longer OUTPUT chain. Starting again with an empty
chain, first we'll need to tell iptables to pass packets belonging to sessions it has
already accepted:

iptables -I OUTPUT 1 -m state --state \
ESTABLISHED,NEW -j ACCEPT

The -state match extension provides iptables with crucial state-tracking abilities,
allowing iptables to evaluate packets in relation to actual sessions and data
streams. Aside from the desirability of this intelligence for its own sake, it also
drastically reduces the number of rules you need to specify in order to
accommodate a single transaction. Without state tracking, you'd need two rules
rather than one to allow, for example, an outbound Telnet transaction; one
each in the OUTPUT and INPUT chains. This is why the above rule should nearly
always be used at the top of any chain whose default policy is DROP.

Next, we need to allow Stunnel itself to connect to strudel:

stunnel -A OUTPUT -p tcp -dport 992 -d strudel \
-j ACCEPT

This command appends a new rule to the bottom of the OUTPUT chain that
permits outbound connections to TCP port 992 on strudel.

Finally, we enter a command similar to the one in the accept-by-default
example, but this one is for the target ACCEPT rather than REJECT and for the
absence of the negating exclamation point before the --uid-owner option:

iptables -A OUTPUT -p tcp --dport 992 -d localhost \
-m owner --uid-owner root -j ACCEPT

Remote Users and Tunnel Ports

Let's look at one more example. rsync is a powerful file-transfer utility that can
perform differential file transfers. It can compare a remote file with a local copy
and download only those parts that differ. rsync can be used in conjunction
with SSH or, you guessed it, with Stunnel.

Suppose you've got a cron job on crueller that uses rsync to compare the file
stuff.txt on strudel with a local copy and downloads any differences. Suppose
further that stuff.txt contains some sensitive stuff, so you use Stunnel to

https://secure2.linuxjournal.com/ljarchive/LJ/100/6091s2.html

encrypt these transfers. But only the local administrators, all of whom belong
to the group “wheel”, need to control the script or use the tunnel.

On strudel, rsync is running in dæmon mode, having been configured to share
a module (virtual volume) named attic. Assuming /etc/rsyncd.conf is properly
configured (the specifics of which are beyond this article's scope), the
command to run rsync in dæmon mode is simply:

rsync --daemon

In addition, strudel also has a Stunnel listener on TCP port 273 that decrypts
and forwards traffic to the rsync process (which is itself listening on TCP port
873). The command to run Stunnel this way on strudel would be:

stunnel -d 273 -r localhost:873 -p /etc/stunnel/
 strudel.pem

On crueller, a corresponding client-mode Stunnel listener would be invoked like
this:

stunnel -c -d 273 -r strudel:273

Okay, we now have a tunnel set up whereby packets sent to TCP port 273 on
crueller will be encrypted and sent to TCP port 273 on strudel, where they'll be
decrypted and forwarded to strudel's local rsync process on TCP 873.

In the absence of iptables rules, if the ordinary user plebian on crueller tries to
use the tunnel, he or she will succeed:

rsync --port=273 -v localhost::attic/stuff.txt .
stuff.txt
wrote 508 bytes read 575 bytes 2166.00 bytes/sec
total size is 48188 speedup is 44.49

Unless, that is, we add an iptables rule on crueller that restricts local use of the
rsync tunnel to members of the group wheel:

iptables -A OUTPUT -p tcp -d localhost --dport 272 \
-m owner ! --gid-owner wheel -j REJECT

Now, plebian's attempt to pilfer the new stuff.txt file will fail:
rsync --port=273 -v localhost::attic/stuff.txt .
rsync: failed to connect to localhost:
 Connection refused
rsync error: error in socket IO (code 10)
 at clientserver.c(97)

But if wheel group member admin7 tries to connect, this will succeed:
rsync --port=272 -v localhost::chumly/stuff.txt .
stuff.txt
wrote 508 bytes read 575 bytes 2166.00 bytes/sec
total size is 48188 speedup is 44.49

Hopefully, you noticed that this presumes a default allow policy. If OUTPUT
instead uses a default drop policy, we'd need a rule in the OUTPUT chain
allowing an outbound connection to TCP 273 on strudel. The OUTPUT chain
also would need to begin with an allow established/related sessions rule. Since
both these rules would resemble strongly those in the previous example, I
won't bother showing them here.

Miscellaneous Notes on owner Matching and Stunnel

As you can see, the uses of --uid-owner and --gid-owner are pretty
straightforward. One thing I haven't mentioned yet is that both options accept
names, as I've shown in the examples, or numeric IDs.

Another issue I've dodged is TCP Wrappers-style access controls. On any
system that uses TCP Wrappers (or whose stunnel binary was compiled with
support for libwrapper), you must add appropriate entries to /etc/hosts.allow
for Stunnel to work properly, whether you run Stunnel in client mode or
dæmon mode on that host. This is a good thing; rather than being one more
thing capable of preventing Stunnel from working, you should think of it as
another layer of your security onion.

Finally, I'm leaving it to you to tinker with --pid-owner and --sid-owner. I will give
you a hint, though. Many dæmons write their parent PID in a predictable place
on startup, that is, /var/run/sshd.pid. By reading such a PID file into a variable
in your iptables startup script, you can match packets originating from a
specific process. Good luck!

Resources

Mick Bauer (mick@visi.com) is a network security consultant for Upstream
Solutions, Inc., based in Minneapolis, Minnesota. He is the author of the
upcoming O'Reilly book Building Secure Servers With Linux, composer of the
“Network Engineering Polka” and a proud parent (of children).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/6091s3.html
mailto:mick@visi.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Internet Abuse

David A. Bandel

Issue #100, August 2002

Help stop spam, create tests for students and watch your packets.

I had an interesting phone conversation about a month ago. It went something
like this (abbreviated for space): “Hey David, I have problem with a client's mail
server [Caldera eServer 2.3]. It's been running great since I installed it two years
ago, but a power failure caused it to shut down. Now, the system comes up, but
the Ethernet interfaces won't come up.” Me: “Well, let's bring them up manually
and see why they don't come up at bootup. Any problems with fsck?” Friend:
“None. I've tried running ifconfig, but it won't configure the interfaces.” Me:
“Run lsmod, if the drivers aren't installed. Let's do that first, then humor me and
run ifconfig exactly as I give it to you.” Friend: “Modules are installed; ifconfig
segfaults.” Me: “Segfaults? (With alarm bells going off in my head.) Let's replace
the ifconfig RPM in case it was damaged when the system crashed (as I'm
thinking, ifconfig is one of the least likely apps to go south). You'll have to use --
force to replace the ifconfig package.” Friend: “It appears ifconfig can't be
replaced, even with --force.” Me: “Please run lsattr ifconfig and tell me what you
see.” Friend: “I see an 'i' to the left of the name.” Me (with Star Trek's “whoop,
Intruder Alert” playing in my mind): “Humor me again. Run locate ifconfig.”
Friend: “/sbin/ifconfig; /dev/sdg/.azgub/backup/ifconfig, /usr/man/man8/
ifconfig.8.gz.” Me: “Well, you just found a rootkit hidden in /dev. Your client has
been broken into. By the way, have any of the security patches been applied to
that server since installation?” (No answer, but I assume not.)

It's a month since I sent a quote to fix his security problems and install a
firewall (among other services). The intruder is still in this system, the Ethernet
cards are in promiscuous mode, and the client seems oblivious to the dangers
(says he's changed his passwords, so he's taken precautions—right). Who's
inside? Why? Has this system with a fairly large pipe been used to break into
other systems and/or act as a zombie to perform DDOS attacks? Some folks
should not be allowed to remain connected to the Internet. Is he alone? Not
hardly. My servers are pounded daily, my bandwidth being eaten by virii,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

automated attacks, etc. And, I'm paying for unnecessary bandwidth because of
it. There should be a law.

SmtpRC sourceforge.net/projects/smtprc

Need to find out if you (or someone on your network) are contributing to the
spam problem? This tool is all you need to help stop the spam problems on
your network. Requires: libpthread, glibc.

GTK-Agenda brufal.kleenux.org/proyectos.shtml

This is an excellent start on a nice GTK agenda. It holds names, phone numbers
and e-mail addresses in a PostgreSQL database. Currently available only in
Spanish, changing the labels, etc., to English, German, whatever, should be
fairly simple—although Internationalization would be the way to go. You can
send e-mails from within this application, but you'll need an SMTP dæmon
running. Should be an easily extended application for your database needs.
Requires: libgtk, libgdk, libgmodule, libglib, libdl, libXext, libX11, libm, libpq,
libssl, libcrypto, libcrypt, libresolv, libnsl, glibc.

x86info sourceforge.net/projects/x86info

If you need to find out more than you can get from /proc/cpuinfo, this may be
what you need. It reads directly from the CPU registers, so it can provide more
information than what most of us will need or even understand. Requires: glibc.

ILIAS www.ilias.uni-koeln.de/ios/index-e.html

If you're looking for a way to give courses and tests over the Internet, ILIAS is
another tool that will allow you to do this. Data on students, test scores, etc.,
are all maintained in a MySQL database. Requires: Apache w/PHP and MySQL,
MySQL server, GD, zlib, freetype, libjpeg, ImageMagick, zip, unzip.

pktstat www.itee.uq.edu.au/~leonard/personal/software/#pktstat

There are a lot of utilities out there for watching packets on your network, but
this one is slightly different. It looks at the percentage of bandwidth use for
packets. This little jewel can tell you very quickly that one of your abusers
running Kazaa is gobbling 99.7% of the available bandwidth. Requires: libm,
glibc.

DNSMan www.xsta.cc/dnsman

This web application is probably one of the easiest ways to maintain your BIND
zone files, even easier than Webmin's BIND module. Requirements are small,

http://sourceforge.net/projects/smtprc
http://brufal.kleenux.org/proyectos.shtml
http://sourceforge.net/projects/x86info
http://www.ilias.uni-koeln.de/ios/index-e.html
http://www.itee.uq.edu.au/~leonard/personal/software/#pktstat
http://www.xsta.cc/dnsman

but it does mean running a web server on your DNS platform. I'll be watching
this one as it develops, as the author has a number of interesting items on his
to-do list. Requires: web server (Apache) capable of running CGI scripts, Perl,
BIND 8 or 9.

ntop www.ntop.org

This month's pick from three years ago wavered between two great programs:
ntop and stickerbook, a great program for children (mine love it, but ntop won).
This is now a much improved version of ntop. It has developed from a simple
ncurses utility to an advanced web client using HTTPS or HTTP for connections,
with graphing in gdgraph (optional). ntop now bears little resemblance to its
former self and is easier to use and read. If you need a top-like utility for your
network, you need this. Requires: libmysqlclient, libcrypt, libm, libssl,
libpthread, libresolv, libnsl, libdl, libgdbm, libz, glibc. Until next month.

David A. Bandel (david@pananix.com) is a Linux/UNIX consultant currently
living in the Republic of Panama. He is coauthor of Que Special Edition: Using
Caldera OpenLinux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.ntop.org
mailto:david@pananix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Where No Penguin Has Gone Before

Rick Lehrbaum

Issue #100, August 2002

Tux arrives at the North Pole, making the spread of embedded Linux truly
global. And, more cool toys for your entertainment needs.

Is embedded Linux a success? Judging from the steady stream of new devices
coming to fruition, it certainly is. In this month's column, we learn of an
incursion by Tux into the arctic region of the globe—perhaps a search for
Santa? Then we take a brief look at a handful of other cool gadgets that run on
embedded Linux.

Tux Searches for Santa

Thanks to a project of the US National Oceanic and Atmospheric Administration
(NOAA), a webcam has been installed for the first time at the North Pole—one
that runs on embedded Linux, no less. The device was installed on April 28,
2002 and is logging four images a day—take a look at NOAA's web site:
www.arctic.noaa.gov/gallery_np.html.

Figure 1. North Pole NetCam

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.arctic.noaa.gov/gallery_np.html

The webcam's images will track the North Pole snow cover, weather conditions
and the status of NOAA's Pacific Marine Environmental Laboratory's North Pole
instrumentation, according to James Overland, head of NOAA's North Pole
Project.

Although the webcam is capable of transmitting camera video at the rate of
one image per second, NOAA keeps the device powered off most of the time in
order to conserve its solar-charged battery power. Four times a day the
webcam wakes up, places a phone call via the Iridium low Earth orbit satellite
system and transfers the latest images at 2,400 baud to NOAA's servers using
PPP.

The webcam being used is the NetCam from StarDot Technologies, a 20-person
company located in Buena Park, California. StarDot created their first webcam
design in 1996, developed a custom digital camera control chip in 1997 and
went on to sell over 65,000 webcams based on that design (manufactured by a
Taiwanese partner and imported to the US by StarDot).

Figure 2. StarDot Technologies NetCam

The NetCam's embedded computer, which runs µClinux (www.uclinux.org), is
based on a 54MHz Motorola ColdFire microprocessor equipped with 8MB of
RAM memory and 2MB of nonvolatile Flash memory. I/O ports include a pair of
RS-232 serial ports, a 10Mbps Ethernet port, an I2C serial bus and four bits of
digital I/O. The device implements a web server function based on Boa
(www.boa.org), which allows it to be accessed remotely from a web browser
anywhere in the world, provided it's connected to the Internet via either
Ethernet, modem or wireless. (See www.stardot-tech.com.)

More Cool Gadgets with Embedded Linux Inside

snom 100 VoIP Phone: The snom VoIP phone supports a wide range of open
telephony standards including SIP, H.323/H.450 and Asterisk, along with data
protocols like HTTP, TAPI and LDAP. The company says the snom 100's IP-based
voice quality is indistinguishable from that of “normal” ISDN phones and, in
addition, the 128 × 64 pixel graphical LCD display and web-browser interface
make calling, remote management and configuration even easier. In addition to
its IP functionality, the device also provides typical telephone features like call
hold, call waiting, call forward/transfer, call divert, caller line identification, and

http://www.uclinux.org
http://www.boa.org
http://www.stardot-tech.com

so on. Inside the snom 100, there's a 50MHz Motorola MPC855T PowerQUICC
Integrated Communications processor equipped with 16MB of RAM. The
system's embedded OS, based on a Linux 2.4.18 kernel, was developed in-
house, and snom created their own drivers and libraries for the use of the 128
× 64 pixel graphical LCD and even wrote their own embedded HTTP server. (See
www.snomag.de/snom100_en.htm.)

Figure 3. snom Phone

hippo Internet Phone: The hippo Internet Phone looks a lot like an ordinary
desktop telephone, but it can make calls over either Ethernet LAN or normal
telephone lines (via PPP, through the user's local ISP). Instead of being carried
as analog signals over normal phone lines, the calls are carried digitally over the
Internet. At the other end, the calls can be received by either another Internet
Phone (PC-based or dedicated Internet Phones) or by a standard PSTN (Public
Switched Telephone Network) telephone anywhere in the world, including cell
phones. Obviously, substantial reductions in phone bills are possible using this
approach because no long-distance phone service is necessary. The hippo
Internet Phone has a 4 × 20 character LCD screen, a 12-button telephone
keypad, six function keys and a telephone handset with hook/switch, ringer and
normal-sounding dial and call progress tones that simulate “normal” telephone
operation. Inside hippo's Internet Phone is an embedded computer based on a
48MHz Motorola MPC850/823 PowerPC system-on-chip processor that is
equipped with 16MB of DRAM and also runs an embedded Linux OS derived
from MontaVista's Hard Hat Linux. (See www.hippoinc.com.)

http://www.snomag.de/snom100_en.htm
http://www.hippoinc.com

Figure 4. hippo Internet Phone

SONICblue Rio Central: This high-fidelity home stereo component that stores
up to 650 CDs' worth of music on its built-in 40GB hard drive is said to be “as
simple to use as a CD player, but as smart as a PC”--a Linux-based PC, that is.
The system is intended to function as a standalone audio system, making it
easy to store your music (“you load your CDs, the device does the rest”) and
create an essentially unlimited number of customized playlists. Thereafter, a
large display, intuitive interface and advanced search features are meant to
make it easy to find the music you want instantly. Plus, the system optionally
offers suggestions based on your tracked listening habits. Inside, there's a
206MHz Intel StrongARM processor along with 16MB of system RAM, running
an embedded Linux OS derived by the system's developers from Debian/ARM
sources. In addition to its standalone operation, the Rio Central can also be
used as the basis of a broader Rio experience, serving one or more companion
Rio Receiver thin clients (which also run embedded Linux) via HomePNA (phone
line networking) or Ethernet. It also can download files to Rio portable MP3
players via USB. The device is broadband-ready (via an external USB-to-
Ethernet adapter), includes a built-in 56Kbit/sec modem (for users without
broadband access) and provides a 10Mbps HomePNA connection. (See
www.sonicblue.com.)

http://www.sonicblue.com

Figure 5. SONICblue Rio Central

Cyclades Device Server: The Cyclades TS100 is a powerful yet highly compact
device server used to connect various serial devices to a TCP/IP network.
Typical applications include industrial automation and control, out-of-band
network management, retail automation and connecting various types of
serially interfaced devices to networks. The device provides interface ports for
both 10/100Mb Ethernet and RS-232/RS-485 serial lines, allowing it to integrate
legacy instruments and systems having serial interfaces to broadband
networks using TCP/IP. Unlike its competitors, which are typically based on
proprietary software models, the TS100's built-in embedded Linux OS and
other open-source software make it easy to customize operation of the TS100.
Although not much larger than a deck of playing cards (2.8" × 3.4" × 1.2"), the
TS100 contains not just one but two microprocessors. This is possible thanks to
the use of Motorola's MPC855T “PowerQUICC Integrated Communications
Processor”. The MPC855T is a dual-core system-on-chip processor that includes
a PowerPC core processor (running at 50MHz) plus a separate RISC engine
specifically designed to off-load communication tasks. Memory resources
consist of 16MB of SDRAM, plus a 4MB Flash disk from which the firmware is
uncompressed and loaded into a RAM disk at boot time. The device's
embedded Linux OS is based on a 2.2.14 kernel, along with a variety of open-
source utilities including the GoAhead web server (for web-based setup and
management of the device), Portslave, OpenSSH 3.1, crontab, BusyBox, net-
tools, rsyncm and others. Cylades started from MontaVista's Hard Hat Linux 1.2
and added their own in-house customization. (See www.cyclades.com.)

Figure 6. Cyclades TS100

Linksys Wireless Presentation Gateway: Using this embedded Linux-powered
device, wireless mobile PC users can project presentations and other data using
VGA-equipped devices such as multimedia projectors, monitors and LCD panels
without having to physically wire each PC to the projector. The WPG11 lets
users take turns controlling the display instantly. Users are each assigned

http://www.cyclades.com

unique key codes for access and control of the device. Because cabling and
setup time is eliminated, WiFi-enabled users can take turns controlling the
presentation display simply by typing in the pre-assigned key codes. In real
time, participants can offer instant visual input that follows the verbal
discussion. Perhaps it even solves the inevitable incompatibilities between the
laptops and the projectors? (See www.linksys.com.)

Figure 7. Linksys Wireless Presentation Gateway

And More All the Time

Keep abreast of all the latest cool gadgets that have Linux embedded inside by
visiting LinuxDevices.com's on-line “Embedded Linux Cool Devices Quick
Reference Guide”: www.linuxdevices.com/articles/AT4936596231.html.

Rick Lehrbaum (rick@linuxdevices.com) created the LinuxDevices.com and
DesktopLinux.com web sites. Rick has worked in the field of embedded systems
since 1979. He cofounded Ampro Computers, founded the PC/104 Consortium
and was instrumental in creating and launching the Embedded Linux
Consortium.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linksys.com
http://www.linuxdevices.com/articles/AT4936596231.html
mailto:rick@linuxdevices.com
http://LinuxDevices.com
http://DesktopLinux.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux for Suits: Scoring 100

Doc Searls

Issue #100, August 2002

Before the dot-com era, there was no such thing as a “Linux company”.
Afterward it was hard to find a major company in computing that didn't run
Linux or sell goods that ran on it.

The biggest word in today's Wall Street Journal is LINUX. Actually, LINUX is tied
with UNIX, WINDOWS, CHECKBOOKS, ROCKS and DB2. All are in the headline of
a full-page ad by IBM on page B3—the first page that accepts advertising—in
the Marketplace section of the newspaper.

This afternoon (I'm writing this in late May) Hewlett-Packard is announcing a
deal with Reuters to move that company's Market Data Systems to HP ProLiant
servers running Linux. The deal spans three to five years and could exceed
$200 million.

HP says it won that piece of business over IBM and Sun, both of which also are
growing Linux providers. IBM has all but embarrassed itself with its public
declarations of love for Linux, getting busted last year for scrawling Linux
graffiti on public property. Sun, meanwhile, has been struggling to find a way to
be pro-Linux without hurting its high-end Solaris business.

So it would understate the matter to say Linux is a hit with big systems OEMs,
and the trend hardly stops there. A year ago Linux was big in only one obvious
category: web servers. Now it's spreading out. HP says its latest sale
“demonstrates the growing presence of Linux in the financial services market”,
a market that used to be synonymous with highly proprietary software and
hardware. HP pointedly adds, “This also places HP in a strategic position as the
financial services market moves from Sun Solaris to Linux.”

Proprietary UNIX systems aren't the only ones threatened. Yes, Windows is still
a monopoly, but for how long? Several years ago that would have been a
ridiculous question, but now it's not. Microsoft seems to have declared war on

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Linux and open-source software—a strategy that is backfiring terribly. Today's
papers bring news that Microsoft reportedly has been trying to convince the US
Department of Defense that open-source software poses both a threat to
security and to the company's intellectual property. Meanwhile the DOD had a
report prepared by MITRE Corp. that identified 249 uses of open-source
systems and tools, including the Defense Intelligence Agency's web portal and
network security software for the US Army and Air Force. MITRE itself maintains
a library of open-source products, including mobile mesh networks and CVW
(Collaborative Virtual Workspace). MITRE even maintains some of its open-
source software on SourceForge.

Even where Linux isn't the operating system of choice, it has opened the door
for other free and open forms of UNIX, such as BSD, which was adopted into
Darwin, the open-source foundation of Apple's OS X. These events have
increased vastly the population of the world's Linux-friendly PCs and servers. At
a recent conference, I asked Steve Jobs if it was true that the company's new
rackmounted X servers were expected to augment, rather than replace, existing
UNIX systems. He said “yes”. After I asked him what other kinds of UNIX crops
prevail in potential customers' server farms, he started his list with Linux.

His answer is not surprising. Here's a rundown of Google results for a variety of
operating systems and related topics:

• Linux: 47,100,000
• Windows: 43,800,000
• UNIX: 12,200,000
• Open Source: 2,740,000
• Free Software: 1,760,000

This is a far cry from 1993, when Phil Hughes included me in an e-mail list that
explored opportunities for a free-software magazine. After batting ideas
around for a while, Phil suddenly announced that his little company, SSC, was
going to start a magazine for Linux, the brainchild of a 21-year-old guy from
Finland.

I thought Phil was nuts. But Phil is very instinctive about stuff other people
don't see. A few years later, during a visit to my house, Phil showed me KDE
running office applications that looked remarkably like what one saw on
Windows. Yet everything he showed me was free and open. It blew my mind so
much that I took him up on his offer to join the masthead. This was in early
1999, when the venture capital was still flowing like Niagara and Linux had an
effect on investors that was something like Viagra. By the end of that year,
three of the biggest IPOs in the history of American business were for
companies strongly identified with Linux: Red Hat, Cobalt and Andover/VA

Linux. VA's IPO in December flew to over $300 per share on day one before
settling at over $200. For a few months there was no shortage of Linux
billionaires.

I recently purged my pile of business cards and took a picture before tossing
the stack into recycling. They told an interesting story.

• Some companies were out of business. That was the case with Linux
Laptops, Rebel.com, Loki, Eazel and OpenSales, which changed its name
to Xelerate (was it one l or two?) before going away.

• Other companies, like Kerbango and Cobalt, were bought up by larger
companies—in these cases 3Com and Sun. 3Com killed off Kerbango and
its cool little radio, while Sun has reportedly done pretty well using Cobalt
to hold up the low end of the company's server business. The Cobalt
Qube remains a benchmark Linux server appliance.

• Others are shifting their focus away from Linux .VA Linux, which was once
so identified with the L word that they paid seven figures for the
Linux.com domain name, paid over $1 billion in stock for Andover and
traded on Wall Street as LNUX, has changed their name to VA Software.

• Corel, after trying to create a kind of consumer/productivity software
business around Linux, jettisoned Linux along with a lot of other ballast in
an effort to stay afloat.

• Linuxcare is still alive, although without its founders, who are off making
news with Sputnik, a new company in the mobile wireless network
market.

• Other companies, like Boxx (not Boxx Technologies, currently operating in
Austin, Texas), which made (or at least prototyped) a fancy Linux/Windows
hybrid laptop, simply vanished.

• Two related market experiments (which I was very enthused about),
CoSource and SourcExchange, quietly folded.

• There are success stories too. Linux-based TiVo is synonymous with the
small but closely watched digital video recorder business. Borland, no
longer burdened by the forgettable name Inprise (which was on several of
my tossed business cards), is reportedly doing very well with Kylix, its
cross-platform Linux development environment.

• SuSE shrank its operations in the US but remains the leading Linux
distribution in Europe and is strong worldwide as well. Caldera is holding
on pretty well. So is Turbolinux.

The big winner is a company with no cards in my pile, Red Hat, which still
proudly flies the penguin flag and remains by far the leading Linux distribution.
(We modestly point out that the name of the editor atop our first issue's
masthead was none other than Red Hat founder Bob Young. Coincidence?)

It's easy to put down all the dot-com enthusiasm and to damn Linux with the
failure of the whole dot-com, um, “model”. The phenomenon had its upside as
well. It helped make Linux a household word and funded a variety of projects
that thrive today. One example is SourceForge, which hosts over 40,000
projects and 430,000 registered users.

Here at Linux Journal, we've been through the hard times along with the rest of
the surviving Linux companies. What's kept us going is the steady march of
Linux toward what Linus Torvalds half-jokingly called world domination.

After 100 issues, Linux Journal has become the leading Linux how-to magazine
for countless technologists—software and hardware companies, government
organizations, medical and scientific institutions and third-world economies
that need maximum productivity with minimal cost. We're in great shape, and
so is the world Linux now dominates: operating systems.

Linux has finally done what UNIX devotees have wanted for decades: it has
driven the OS to ubiquity. Today the only UNIX systems with any future are
free, open and ready for improvement by anybody who wants to jump in and
help. That's one heck of a success story.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Fair Use

Lawrence Rosen

Issue #100, August 2002

Trying to define fair use is stickier than you might think.

Occasionally I hear the “fair use” defense made to excuse someone's breach of
someone else's copyright. Unfortunately, the word fair has colloquial meanings
that are different from the legal meaning of the phrase fair use. Copyright law
says you can't copy certain software even though it may be fair to have a
backup copy at home. You can't create derivative works from certain software
even though it may be fair to build whatever programs you want. You can't
reverse-engineer certain software even though it may be fair to be able to fix
defects, ensure security and interwork with your other software.

The law doesn't say that any licensing practice you find distasteful or that you
morally oppose can be ignored if to do so would be fair. The constitutional
foundation for the fair use doctrine was described by one court this way:

The fundamental justification for the [fair use]
privilege lies in the constitutional purpose in granting
copyright protection in the first instance, to wit, “To
Promote the Progress of Science and the Useful Arts.”
[Const., Art. I, Sec. 8, Cl. 8] ... To serve that purpose,
“Courts in passing upon particular claims of
infringement must occasionally subordinate the
copyright holder's interest in a maximum financial
return to the greater public interest in the
development of art, science and industry.” Rosemont
Enters. v. Random House, Inc., 366 F.2d 303 (2d Cir.
1966), cert. denied, 385 U.S. 1009 (1976).

Under this formulation, fair use is a privilege and not only a defense. Your right
to make certain uses of copyright materials is guaranteed by the Constitution in
the same sentence that allows an author to obtain a copyright on his or her
works. The monopoly that copyright law confers is a limited one, limited not
only as to duration but also limited as to the author's exclusive rights.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Congress codified the fair use doctrine in the Copyright Act, 17 U.S.C. § 107, to
make it clear what forms of use are to be considered fair. The statute lists
“purposes such as criticism, comment, news reporting, teaching (including
multiple copies for classroom use), scholarship, or research”.

Whenever you see the phrase “purposes such as” in a statute, be prepared for a
debate. Congress obviously couldn't list all purposes, so what other purposes
will pass muster? For example, copying your office word processing program
onto your home computer because you're only using it in one location at a time
is not one of the purposes listed in the statute, but can you argue that it is like
one of those purposes? Is reverse-engineering to detect security flaws in
software a form of criticism or research? Can a teacher make thousands of
copies of a software program available for a course taught over the Internet?
And as if that isn't enough vagueness for a statute, Congress then proceeded to
list four factors to consider in determining whether a use is fair:

1. The purpose and character of the use, including
whether such use is of a commercial nature or is for
nonprofit educational purposes. News reporting,
scholarly research and teaching are examples of
favored fair uses of copyright material. Commercial
use is not favored.

2. The nature of the copyrighted work. The law
generally recognizes a greater need to disseminate
factual works than works of fiction or fantasy. To the
extent one must permit expressive language to be
copied in order to assure dissemination of the
underlying facts, copying may be more justified.

3. The amount and substantiality of the portion used
in relation to the copyrighted work as a whole. Fair use
is less appropriate if entire works, or the most valuable
parts of them, are copied.

4. The effect of the use upon the potential market for
or value of the copyrighted work. If copying a work will
prevent the owner of the copyright from profiting from
it, even if such profit is only potential, the copying is
less justified. This factor may tip the balance in favor of
fair use where there are no other known copies of the
work in existence, where the copyright owner is
unidentifiable, or where there is no ready market by
which copies can be sold.

None of these factors is determinative standing alone. In evaluating them, a
court must undertake a “sensitive balancing of interests”. Financial Information,
Inc. v. Moody's Inv. Serv., 751 F.2d 501 (2d Cir. 1984). So too, when you seek to
infringe someone's copyright, you should perform your own “balancing of
interests” analysis. Consider whether your use is similar enough to one of the
purposes listed in the statute, and go through each of the factors, asking

whether that factor balances in your favor. If you can't convince yourself that
you pass the fair use test, don't infringe.

If you use open-source software such as Linux, fair use is generally not an
issue. An open-source license safeguards the rights of anyone, anywhere, for
any purpose whatsoever, to use, copy, modify and distribute (sell or give away)
the software and to have the source code that makes those things possible. All
uses are licensed by the copyright owner, so you don't need to defend your use
with the fair use doctrine. This is yet another reason why free and open-source
software is better than proprietary software. With proprietary software, be
careful to have a valid fair use argument if you do anything not permitted by
the license. With free and open-source software, enjoy your broad and
comprehensive fair use rights.

Legal advice must be provided in the course of an attorney-client relationship
specifically with reference to all the facts of a particular situation and the law of
your jurisdiction. Even though an attorney wrote this article, the information in
this article must not be relied upon as a substitute for obtaining specific legal
advice from a licensed attorney.

email: lrosen@rosenlaw.com

Lawrence Rosen is an attorney in private practice, with offices in Los Altos and
Ukiah, California (www.rosenlaw.com). He is also executive director and general
counsel for Open Source Initiative, which manages and promotes the Open
Source Definition (www.opensource.org).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:lrosen@rosenlaw.com
http://www.rosenlaw.com
http://www.opensource.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

ASA 2URS3 Rackmount 2U Server

Logan G. Harbaugh

Issue #100, August 2002

The 2URS3 offers high performance and top-of-the-line engineering at a
reasonable price.

Many people come to Linux looking for an inexpensive server platform, but
web sites, databases and other Linux-based application servers have ways of
growing in size, complexity and importance that affect the company's bottom
line. When this happens, it becomes desirable to upgrade the server hardware
from that old 486 desktop system to a real server platform.

Servers come in a wide range of qualities and prices. At the low end are
inexpensive systems with desktop cases and motherboards, and at the other
are name-brand, custom-configured, redundant-everything rackmount boxes
with five- or six-figure price tags. ASA Computers offers a multitude of servers
in 1U (1.75"), 2U (3.5") and 4U rackmount configurations, as well as pedestal
(desk-side) cases with up to four processors. The 2URS3, in a configuration
intended to be a database server, offers high performance and top-of-the-line
engineering at a reasonable price.

The 2U rackmount server I tested included an Intel SCB2 motherboard with on-
board SCSI, dual 1.13GHz Pentium III processors, 2GB RAM, an ICP Vortex 64-
bit/66MHz Ultra 160 RAID controller, one IBM 9GB Ultra 160 boot drive and four
Seagate Cheetah 10,000RPM 18GB Ultra 160 drives in a hot-swappable RAID-5
configuration. It also included integrated dual 10/100 Ethernet interfaces, an
integrated ATI Rage 8MB video controller, an Intel PRO/1000 Gigabit Ethernet
NIC and a Hewlett-Packard 12/24GB DDS-3 DAT drive.

The keyboard and mouse (not included) can share a single PS/2 port via a Y-
cable, or two USB ports also are available. There is no parallel port, and the one
serial port has an RJ-45 connector rather than the standard DB-9. (There's only
so much real estate available on a 2U case.) The standard warranty is one year
for parts and three years for labor. On-site service is not currently available.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The motherboard supports up to six 64-bit/66MHz PCI cards, three full-height
and three low-profile, with each set of three on a separate PCI bus. Two slots
were used for the Intel Gigabit Ethernet NIC and the ICP RAID controller. The
motherboard supports up to 6GB of PC133 interleaved RAM and one or two
1.0, 1.13, 1.26 or 1.4GHz Pentium III processors. The system uses a nicely
engineered Intel SR2200 case that is capable of redundant 350 watt-power
supplies, though only one was installed. All sheet metal edges are folded over
to prevent sliced fingers; construction is solid and the case supports up to six
hot-swap SCA drives. A floppy/CD combo drive (or a seventh hot-swap hard
drive) can be added, and there is room for a tape drive as well (or a floppy or
CD, if the seventh hard drive option is in use). A rackmount rail kit is also
included.

The only quibble I have with the case is that the locking button for the slide-off
top can be easily bent too far, which then keeps the top from locking closed.
This won't be much of an issue when the case is mounted in a rack.

The system is a real screamer, fully capable of running with the fastest Intel-
based systems around. Throughput on the Gigabit Ethernet adapter was over
900Mbps, and sustained file transfers reached speeds of over 30MB/sec using
the RAID volume. This speed could be increased by adding spindles to the RAID.
In a effort to benchmark the overall system performance, I used an Antara
FlameThrower to generate requests against the web server, downloading
graphics and sound files as well as text pages. The overall performance
numbers were about 1.6 times as high as for a 1.4GHz single-processor
Compaq server, indicating that SMP is working well and overall system
performance is comparable to the best systems around.

The price quoted by ASA Computers for the system as configured is $5,542.
Using Dell's web site, a comparable PowerEdge 2550 2U server came in at
$7,911. The ASA Computers system is a well-engineered system with high-
quality, name-brand components and a huge bang for the buck. So what don't
you get for the price? Two things—name recognition and hand-holding.

ASA Computers is a relatively small company (compared to Compaq, Dell or HP)
that has been around since 1989, a fact that has both pluses and minuses. ASA
is much more likely to respond to special requests from customers and give
those customers quick results. On the other hand, it can't offer the kind of
service organization and sales support that the big companies can. For
example, the system I received had no documentation other than the vendor
documentation for the motherboard, chassis and RAID controller. A simple
hardware build sheet didn't include any information on what software was
installed, what packages were installed, how the RAID was configured or even
what the root password was for the system.

For administrators who intend to install their own standard server software, or
who are comfortable with rooting around in the depths of the system, this lack
of documentation might not be a problem. When I called, the support
technician at ASA was able to give me the information I needed immediately,
with no time spent on hold. ASA does offer customized hardware/software
configurations that could be specified to include documentation and software
at additional cost. However, the sales support that you may expect from one of
the big companies, which could help you select the OS, database software,
appropriate storage devices, configuration details for the devices (what RAID
works best for a given type of database?), configure the OS and database
software, install it at your site and provide ongoing support, is not available.
This is the kind of capability you pay the extra money for when you buy servers
from IBM, HP, Compaq and other, larger companies.

If you can provide your own support, however, ASA offers a wide variety of
equipment. Everything from 1U web servers to four-way Xeon servers with ten
drive bays are available, all with best-of-breed components and all at great
prices.

Product Information/The Good/The Bad

Logan G. Harbaugh (lharba@awwwsome.com) is a freelance writer specializing
in networking. He has worked as an information technology manger and
manager of systems integration and has been a networking consultant for
more than 15 years. He has also written two books on networking.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/100/5756s1.html
mailto:lharba@awwwsome.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

ImageStream's Rebel Router

Paul M. Holzmann

Issue #100, August 2002

Nothing on the market today can touch the Rebel Router from a cost/savings
perspective.

The box arrives and the glee of a child at Christmas washes over me—a new toy
to play with. Only this is no ordinary toy. This is a DS3 (T3) router that costs
under $4,200 US. Three years ago I would have scoffed at the possibility of such
a thing. I was used to the world of Nortel and Cisco, a world in which a router
this powerful cost as much as a new car and, in some cases, a small house. It
was a world in which RAM and card upgrades became necessary due to the
growing number of routes on the Internet, and the aforementioned companies
would charge in excess of $15,000 US for an upgrade that really didn't allow
your router to do anything it wasn't doing the year before. And it was aworld in
which good technical support meant signing a $10,000/year contract. Boy, the
world has changed since then.

Anyhow, back to the box. Opening it, I find the new and improved Rebel Router
from ImageStream. For those of you who don't know, ImageStream makes
Linux-based routers that are capable of wire-speed throughput yet are
incredibly flexible and inexpensive. I have been using theses routers for the
past two years, both in my network and in customer networks, with great
success. The new Rebel Router comes in a black rackmount case about the size
of a Cisco 2500 (height: 1U, depth: 10.75"). The front is adorned with the
ImageStream logo and a blue LED that really makes it stand out on a network
rack. The back panel includes dual 10/100 Ethernet ports, an auxiliary console
port, a couple of fans for cooling and two PCI card slots. In order for me to test
this router for Linux Journal, I requested a configuration that I could use to
replace my current network router. Because of those needs, my configuration
includes a single DS3 card and a Quad T1 card.

Upon opening the case, I was struck by the neat layout. The case is segmented
into three parts. The left side of the case contains the single power supply. The

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

central section contains what is essentially a PC-based motherboard sans PS/2
and parallel ports. The right side contains the area for the serial cards.
ImageStream sells cards for this router in the following capacities: single or
quad 10/100 Ethernet; single, double, quad or octal port T1; and single DS3.
ImageStream does sell Dual DS3 cards, but they don't recommend them for
this router. Instead they recommend a platform with multiple CPUs for a
multiple DS3 configuration. On a further note, under the recommended
configurations they guarantee wire speed.

Now to the real point of this review: what can the Rebel Router do? One great
feature of this router is its ability to bond multiple interfaces. For instance, you
can bond two T1s to get a 3Mb channel as opposed to a fractional DS3. This can
come in handy if you want to avoid the high local loop charges associated with
most DS3s. As the marketing literature says, you can provide connectivity for up
to 16 T1/E1s or one DS3/E3, but aside from the level of throughput, the most
impressive part of this router is the routing capabilities. The Rebel Router uses
GateD, originally developed by Merrit. These are the same people that
developed the Radius standard, as well as many other technological advances
used on the Internet today. GateD supports static, RIP, OSPF and, most
importantly (for ISPs and large companies), BGP-4 routing.

For those unaware, BGP-4 is the standard used to route traffic across the
Internet dynamically, and it is used in almost all configurations that are truly
redundant (i.e., connections to more than one upstream provider). As the
Internet has exploded in growth over the past few years, so have the number of
routes in the routing tables. This has caused many ISPs to have to upgrade
their RAM, which can be prohibitively expensive, as I mentioned above.
ImageStream uses a relatively off-the-shelf, unbuffered RAM that is inexpensive
when compared to the proprietary RAM sold by other router manufacturers.
Combine this with the fact that these routers are slightly modified PCs using
Intel processors, that you have your choice of the 2.2.14 or 2.4 Linux kernel,
and you get an incredibly powerful router without the hefty price tag of
something that is totally proprietary.

Some of the other wonderful features of this router are the result of its Linux-
based nature. For example, If you are like me and wouldn't use Telnet on your
servers to save your soul, then guess what? You don't have to on your routers
either. All ImageStream routers allow you to turn off Telnet in favor of SSH. If
you don't feel like learning a new firewall language or messing around with
access lists, then you can use the ipchains that come with the current 3.2
distribution. The 2.4 kernel, and therefore iptables, are also available. In
addition, if you truly hate to use menus to get things done, you can always drop
to the shell and do anything that you would do in a normal Linux system.

Because all of the files for configuring your interfaces, routing, firewalling, etc.,
are in ASCII format, you can open them in vi or Pico and make your changes.

Other great features of the Rebel include the ability to see the traffic flowing
through the router in real time. ImageStream routers come with a program
called Stats that works just like the top command (also available from the
command line), except that instead of seeing system resources you can see
your interface-usage statistics. This feature helps a great deal when you're
troubleshooting. Another great feature is the QOS system that uses Diffserv to
allow you to limit bandwidth and shape parts of your network down to the
single-IP level. This can become essential in a limited bandwidth environment if
you need to give priority to certain types of traffic.

One of the new services that this router provides is IPSec using FreeS/WAN.
This is something I had never played with prior to this router test, so I ended up
getting on the phone with the support staff at ImageStream because I did not
want to chance doing something wrong and taking my network down. I spoke
with Josh, who was very knowledgeable and friendly and helped me set up a
test VPN. We first set up a subnet-to-subnet VPN. This setup took about 15
minutes, as I was a newbie and wanted to understand everything about it. Once
that was done we were able to set up additional VPN tunnel variations rapidly,
including subnet-to-PC and PC-to-PC.

Over the span of the week that I tested the router, it performed flawlessly.
Because I have used ImageStream routers before, I felt totally confident that it
would perform without a hitch as the core of my network, and it didn't let me
down. During that time period I added an additional T1 to the network,
changed the BGP-4 AS number and added another block of addresses in the
normal course of business. In addition, I tested the IPSec service and did DS3
throughput tests, all without a hitch.

Finally, the most important feature of these routers is the support. I have used
ImageStream routers for almost two years now and have found that the biggest
savings in the purchase of these routers is the support. ImageStream's support
personnel are knowledgeable, friendly and go out of their way to ensure that
you are happy with the product. The best part about dealing with ImageStream
is that there are no support contracts. They provide 24/7 tech support and free
software updates for the life of the product, and they warranty the hardware
for a year. That being said, there is nothing on the market today that can touch
the Rebel Router from a cost/savings perspective.

Information/The Good/The Bad

https://secure2.linuxjournal.com/ljarchive/LJ/100/5846s1.html

Paul Holzmann currently lives in Grand Rapids, Michigan where he is the
technology manager for TAK Consultants, Inc., a local accounting, consulting
and internet firm. In addition, he and his business partner, Thomas Korth, have
recently started a new business called Worldwide Dialup
(www.worldwidedialup.net) that provides global dialup internet access.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.worldwidedialup.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

OmniCluster Technologies' SlotServer

Linda Hypes

Issue #100, August 2002

Note: this review is specific to the SlotServer 1000. OmniCluster's SlotServer
3000 has additional features and memory.

Wouldn't it be nice to have a complete, multiplatform network at your fingertips
—one that fits right on your desk? That may not be the first item on everyone's
wish list, but as a company that creates solutions for integrating different
operating systems, it certainly ranked high on ours.

The biggest limiting factor to accomplishing this was obviously space, but with
the help of OmniCluster Technologies, our dream became a reality. We first
met OmniCluster at LinuxWorld 2001 in San Francisco, where they were
demonstrating what looked like some type of network expansion board, but
turned out to be a complete Linux blade server on a PCI card.

The SlotServer is a half-length industry standard PCI card that contains a fully
compatible x86-based server blade with two network adapters. The standard
bracket provides an integrated 100Mbps network interface. A second “Modular
Network” is also provided as a peer network connection between the host
system and each card. This network adapter is essentially two Gigabit Ethernet
adapters set back to back in the same integrated circuit. One of these adapters
is connected to the PCI bus of the SlotServer processor and the other connects
to the PCI bottom-edge connector and hence to the “host” system. Multiple
peer modular networks can then form a high-speed local private network with
the host machine. This high-speed connection allows each SlotServer to
operate diskless Windows or Linux from a “virtual partition” of the host
machine's filesystem. This permits a RAID filesystem to be shared by many
SlotServers and enables a provided utility, called Virtual Disk Manager, to
create, replicate, remove and associate operating system images for all the
SlotServers in a system. The SlotServer kit even includes one sample OS image.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The SlotServer can be loaded with Windows 2000, NT, XP, Linux and FreeBSD
operating system environments and can run any application supported by
those operating systems. It fits into any standard PCI slot, allowing you to have
complex server clusters and multiple operating systems within a single PC base.
The minimum of two network ports per SlotServer permits processing
information in-line to or from the host.

We had previously looked at other blade servers from various vendors, but they
were considerably more expensive and required an additional proprietary
chassis, bumping the cost up even more. So, we decided to give the SlotServer
a try.

We obtained our first SlotServer for use in our support organization. Our
products run on Windows and provide file-sharing capabilities with any
operating system that uses NFS (network filesystem), including UNIX or Linux,
so we get support calls involving a wide range of operating systems. With the
different variations of UNIX and Linux available, we would require a large
number of servers in-house if we did support using traditional methods. The
ability to use SlotServers to run these operating systems has allowed us to
support them by using only a couple of mini-tower-based host systems. We
have saved countless hours in building and rebuilding systems to different
operating systems or specific versions of an operating system, enabling us to
test and resolve issues more quickly for our customers.

The SlotServer provides the same benefits of multiple servers and operating
systems within one system for our developers. Our products run on and are
developed on the Windows operating system. However, since the products are
used to share files between Windows and other operating systems, a minimum
of two machines are needed for even a cursory test. Using the installed
SlotServer, the developers have a complete test environment consisting of two
different operating systems within a single machine. This allows them to
perform functionality tests efficiently without needing external resources. It's
also very helpful when testing precertified, unstable code. If a blue screen
occurs on the SlotServer, their host machine will not be affected.

The SlotServer has also proven to be very beneficial for us at tradeshows.
They're lightweight and easy to ship—we used to spend a small fortune just
shipping the number of various machines we needed to demonstrate our
products. With the ability to configure different operating systems on each
SlotServer within one mini-tower system, we are able to demonstrate all of our
products at a tradeshow using one mini-tower and two laptops.

We can also easily change our server configuration, for example, from Red Hat
to SuSE or any of the many other operating systems supported on the

SlotServer. If we are demonstrating our DiskAccess NFS client or X-Win32 X
server with Red Hat NFS server loaded on the SlotServer, and someone wants
to see our products working with a SuSE NFS server, we can quickly comply
with their request. The SlotServer allows you to boot up in different operating
system images by way of OmniCluster's host-resident Virtual Disk Manager
(VDM). We simply assign the SuSE boot image to the SlotServer and reboot it via
VDM without affecting the host system or any of the other SlotServers installed
within the host system. One operating system and its associated applications
can be exchanged in a minute or so. With this ease of configuration, we can
demonstrate our products within another company's server by simply installing
the SlotServer in an available PCI slot and powering up their system.

While our use of the SlotServers has advantages from which others could
benefit, the different applications that can share a mutual benefit with these
devices is tremendous. Some of the more mainstream uses for the SlotServers
include front-end servers for highly available web clusters, generic application
mirroring for automatic failover and even a dedicated firewall solution (Check
Point) that runs inside mission-critical servers. The use of industry-standard PCI
as the SlotServers host interface means that blade systems made with
SlotServer are not proprietary. We can use any available PCI system as the host
and any of thousands of PCI peripheral cards can be mixed in our
configurations as necessary.

Note: this review is specific to the SlotServer 1000. OmniCluster's SlotServer
3000 has additional features and memory. For additional information on both
of these products, please visit www.omnicluster.com.

Product Information/The Good/The Bad

Specs

Linda Hypes is sales and marketing director at Shaffer Solutions for the
AccessNFS Product Suite.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.omnicluster.com
https://secure2.linuxjournal.com/ljarchive/LJ/100/5880s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5880s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Benchmark's ValuSmart Tape 80

Cosimo Leipold

Issue #100, August 2002

A new generation half-height DLT drive.

Do you have mission-critical machines that need to be backed up and need a
reasonably priced solution? The VS Tape 80 DLT backup drive may be the
answer. As part of a new generation of half-height DLT drives, this device is
geared toward users who require tape drives that will fit into an existing
rackmount system. In other words, if you have little rackmount space to spare,
this drive may very well suit your needs.

Benchmark (www.4benchmark.com) was kind enough to provide me with an
external VS Tape 80 with an Adaptec 29160 card. The test machine consisted of
a dual PIII with 800MHz processors, 7200RPM IDE disks and 512MB RAM. We
used Red Hat 7.2 and BRU-Pro 2.0 as our backup solution.

Prior to receiving the drive, I was unsure whether corners had been cut in order
to achieve a half-height form. This was, after all, the world's first half-height
DLT. Fortunately, that doesn't appear to be the case. The drive itself feels like a
quality product and also performs like one. It comes with three simple LEDs on
the front: Drive Error, Ready and Clean Media. It also has an unload button that
has a nice soft feel and, unlike many DLT drives, doesn't require you to flip a
locking mechanism to eject or insert. My only concern was the sound the drive
made when inserting or ejecting media. It was a loud, grainy sound that didn't
sound like any other drives I'd heard before. That said, it was probably nothing
serious, as BRU-Pro 2.0 performs checksums on the buffer level, and I never
once found an error. If any of you are prone to taking naps during backups (as I
am), it should be mentioned that the drive is incredibly quiet during operation,
and the slight humming sound greatly facilitates sleep.

From a performance standpoint, this puppy won't scream like an LTO drive
(which can reach 15-30MB/s for the HP Ultrium 230 models—see the review in
the December 2001 issue of LJ, on-line at www.linuxjournal.com/article/5412).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.4benchmark.com
https://secure2.linuxjournal.com/ljarchive/LJ/092/5412.html

However, it also costs less than a third of what the HP Ultrium LTO drives cost.
According to Benchmark, the drive performs at 3MB/s native and 6MB/s
compressed. BRU-Pro allows you to tweak the size of the block size it writes. I
was unable to get any significant changes in speed by tweaking this value,
though the 64K buffer seemed to offer the best performance. In the end, I was
able to achieve writing speeds between 3.3 and 4.5MB/s, with an average speed
of around 4MB/s. Restores were typically a little slower, averaging about 3.8MB/
s. I called TOLIS Group, makers of BRU-Pro, because I knew they used these
drives for some of their internal testing and training. They told me they've
managed to push the drive to 5MB/s in their tests. I was unable to reach this
speed but came close.

For the individual looking to back up more than 80GB, Benchmark has a
product called the 640 Blade, which uses the same drive with eight tape
cartridges that rotate in a carousel into the drive for a total capacity of 640GB
(compressed). It's the first 2U DLT autoloader designed to fit in rack-optimized
servers. At $4,000 US, the entire system costs less than a single HP Ultrium 230
upgrade kit for their SureStore line. For those looking for both speed and
space, Benchmark makes the argument that at such low cost, several of their
640 Blades still cost less than a typical autoloader and offer more reliable
backups.

The primary backup system we use here is an HP SureStore 2/20 with two HP
Ultrium 230 drives. The HP SureStore 2/20 costs about $21,000 US and can
push up to 15MB/s native (or 1.08TB/hour) on each drive. For about the same
cost one could purchase five 640 Blades. From a purely mathematical view, it
would appear that the Blades would be slower. Each Blade can push about
10.8GB/hour (native). With five you would top out at around 54GB/hour.

However, I think the Blades, depending on your configuration, might be a faster
solution. How? The catch is that the Ultrium 230s are so fast that we've had
trouble pushing data to them as fast as they can write. In our environment we
have a handful of fast machines that can push data at about 8-11MB/s to the
Ultriums and about 20 clients on a slower network that can only push data at
about 3-4MB/s. At any given point in time we can back up two clients, one to
each drive (we do not use multiplexing because of the serious performance hit
it causes on restores). The bottleneck in our case isn't our network but rather
the slower, older client machines. If instead of the Ultrium drives we had five
640 Blades, we could write five clients at any given point in time, making our
effective backup rate faster than the Ultriums'.

It also should be noted that with the 640 Blades you would have multiple drives
and multiple backup solutions, so if one did unexpectedly get destroyed in a
freak accident (such as spilling coffee on it during one of your naps), you

wouldn't be left high and dry. Certainly from that perspective, the 640 Blade
offers peace of mind and added reliability. I would recommend the Blade 640s
for small to medium-sized environments, clustered environments or physically
disperse environments in which having several backup servers makes sense.
They are certainly worth considering when cost is a major deciding factor.
Benchmark will also be coming out with a VS Tape 160 drive with double the
capacity and an impressive 8MB/s native speed by the time you read this.

If you need a top-of-the-line system with all the speed and power you can
muster, provided you can push data fast enough, LTO is probably the way to
go, and our system from HP has performed well (knock on wood). If what you
need is something small, well-priced and reasonably powerful, the VS Tape 80
is an excellent choice. I've grown quite enamored with the drive since I plugged
it in (and also with BRU-Pro 2.0—see my review at www.linuxjournal.com/
article/6068), and I wish I could afford one for my own personal use. Donations
are welcome.

Product Information/The Good/The Bad

Cosimo Leipold is an analyst for DiamondCluster International in Chicago. He
spends his free time skiing, scuba diving and trying to take as much vacation as
possible. He welcomes comments, thoughts and ideas at cosimo@hypnotic.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/000/6068.html
https://secure2.linuxjournal.com/ljarchive/LJ/000/6068.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/5911s1.html
mailto:cosimo@hypnotic.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Letter Editor

Issue #100, August 2002

Readers Sound Off

Eyes Opened—Looking for Lurkers

I'd like to thank Charles Curley and (obviously) Linux Journal for writing the
“Emacs: the Free Software IDE” article in the June 2002 issue. I've been using
XEmacs for four years for my programming projects, and Charles' article
opened my eyes to a bunch of options I wasn't even aware of. I guess I'll be
spending the next couple of weeks (or months) going through the Emacs
documentation to see what else is lurking in the 20MB of source code. Thank
you LJ for publishing such an informative (and well-written) article.

—Robert James Kaes

Humor in Advertising

It's great that you can afford to spend an entire page on humor, even though
it's not the April issue. And it's even that dry, sarcastic humor that you usually
find only in British publications. I'm referring, of course, to the Compaq ad
parody on page 51 of your June 2002 issue, where they brag about being such
an early adopter of Linux when “their” employee, a Mr. Jon “maddog” Hall,
ported Linux to “their” Alpha system. And how “they” funded and otherwise
supported Linus as early as 1994.

As a matter of fact, wasn't Mr. Hall employed by DEC in 1994, when he ported
Linux and helped to get funding for Linus to support the Alpha architecture? In
1994, wasn't Compaq, as well as Dell and all the other major OEMs, claiming
that no one wanted a Linux system?

I realize that Compaq now owns all the assets of DEC and that marketing
people have no shame, but if this ad is believable, perhaps I should be able to
buy a Picasso and then claim that I painted it.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

—Bill Peterson

Jon “maddog” Hall replies: Linux Journal was kind enough to allow me to answer
your Letter to the Editor.

No one felt worse about the demise of Digital Equipment Corporation and its
purchase by Compaq than I did. I had used DEC products since 1969, and it was
on a PDP-8 through the use of a DEC training manual that I taught myself
assembly language programming. When I was the Department Head of Data
Processing at Hartford State Technical College, DEC repaired my PDP-11/70 for
free because it had taken them so long to find the problem, and the school had
no budget that year for the “time and materials” it would have taken to fix it.
Later I learned UNIX and was system administrator to six VAX 11/780 machines
at Bell Laboratories.

Through the years I got to know a lot about DEC culture and its commitment to
its customers. As part of this commitment I was involved with DECUS, and from
the DECUS members (Kurt Reisler, in particular) learned about Linux. Digital
Equipment Corporation was more than a company, it was a family.

Yes, I was working for Digital at the time that the Alpha Project was started. Yes,
it was several years before Compaq bought Digital. Yes, I felt a pang as Compaq
took over Digital's role as the “first system vendor to join Linux International”
(even before VA).

On the other hand, to deny Compaq the right to that claim denies the work that
the people who still are employed by Compaq (or should I say HP?) did at that
time. I know that Maurice Marks, who basically funded the Alpha Linux work in
the first days is still at the “new HP”. Jay Estabrook (Hi Jay!) who did a lot of the
low-level porting work is also still there, helping to continue support of the
Alpha with Linux. The Alpha high-performance group, who started some of the
first commercially available Beowulf clusters is still working away. The Digital
compiler group, who ported their compiler technology to Alpha Linux is still (to
my knowledge) working away. There were many, many people besides me who
contributed their time and expertise, paid and unpaid, employee and customer,
to the Alpha Linux Project. They did it because of the love of Linux and the love
of Digital. They did it both with the support of their upper management and
sometimes in spite of it.

To deny them their role in the support of Linux just because their company
now has a new name is not fair either.

And if Compaq does not claim the right to say that they supported Linux first,
who does? Digital Equipment Corporation is no more, and all the wishing to

bring it back will not make a bit of difference. Soon I will expect to see Hewlett-
Packard take up the mantle. And now, to set the record straight, a lot of other
companies had people supporting Linux early on. Sun supported David Miller
to do Linux porting work to Sparc. Compaq had people in Houston who helped
to write device drivers and do porting. I know there were people at IBM and HP
who were also doing Linux work. But for one reason or another the cultures of
their companies did not allow them to have the visibility that Digital's culture
allowed me.

In 1998, when a lot of companies held up their hands to say “they supported
Linux” a lot of people were able to come “out of the closet”, but that does not
mean those people were not active before. I had just come out a little sooner,
and with a little more fanfare. Then again, I have never been a shrinking violet.

The world of computer company buyouts and mergers creates little tricks in
time and space, and we should learn to live with them. A friend of mine, David
Mosberger, who did a lot of work on Alpha Linux, recently wanted to return an
Alpha system lent to him by Digital in 1995. But he did not know who to return
it to, since Digital no longer existed. I told him to just hold on to it, and that
things will be made right again. You see, for the last several years David has
worked for Hewlett-Packard. His system is back home again.

The bottom line of this is that if I were writing a history book, I would mention
the contributions of Wang, Prime and a host of other defunct computer
companies like Digital Equipment Corporation. But I live in the here and now,
so the current company that supported Linux in 1994 is Hewlett (née Compaq,
née DEC) Packard.

Trivial Correction

Regarding the June 2002 issue, page 8, trivia question 1—please lay this myth to
rest. Yes, Grace Hopper did find a moth in a relay. That log page is now in the
Smithsonian Institute, I believe. But “bug” in the current sense has been around
since Thomas Edison's days. See www.byte.com/art/9404/sec15/art1.htm and/
or www.catb.org/~esr/jargon/html/entry/bug.html.

—Felix Finch

Suggestions Welcome?

Editor's note: The following Letter to the Editor came to us written by hand on a
sheet of yellow legal pad paper.

http://www.byte.com/art/9404/sec15/art1.htm
http://www.catb.org/~esr/jargon/html/entry/bug.html

From the Desks of Adrian and Mike: We understand that yours is a magazine
that would like to appeal to Linux enthusiasts. Therefore, we have some
suggestions regarding your fluffy layout:

1. Use fixed-sized, monospaced font throughout the entire publication. All
pictures must be represented as ASCII art or PostScript files, and there
must be no color. You've got black; you've got white. What more do you
need?

2. The cover should not contain anything but the title and the date.
3. The binding should be staples and not glue, which is bad for the

environment and embarrassingly corporate.
4. All type must be printed with high-impact printers to give each page a

unique and profound texture.

5. You should change the name of your magazine from Linux Journal to
Linux Kernel and, under no circumstances, write about anything that is
not a part of or that cannot be directly compiled into the kernel.

6. There is no need to use English for all the articles. C and Bourne shell
scripts are languages much more recognized by the global Linux
community.

7. We could go on for pages but feel strongly that if you just covered the first
6, just a half a dozen honest, down-to-earth and from-the-heart
suggestions, your circulation would multiply by a factor of ten (we know
we would by ten issues each month just cause they were that cool); your
revenues would skyrocket, never mind the inherent irony about the
relationship between your capitalist intentions and the brilliant and
revolutionary open-source model that Linux embraces, and, not to
mention, we'd buy you beer.

—Adrian and Mike

Social Destruction

On a whim I was reading Harriet Beecher Stowe's Uncle Tom's Cabin today. I
was struck by how, at the time, abolitionists were considered socially
destructive extremists—and the South's reflexive reaction was censorship. The
essence of freedom is freedom of thought and creativity, bounded by essential
(not submissive!) respect for others. I believe that, perhaps in 50 years, perhaps
2,000 years, but with the same certainty that humanity will survive, intellectual
property will come to be regarded with the same revulsion and embarrassment
as human beings as property.

—Stephen Schaefer

Protocol Problems

The Linux for Suits column, “The Protocol Problem”, by Doc Searls in the July
2002 issue of Linux Journal, was of interest to me because it is an issue that I
think we are seeing several major issues start to develop around. There seems
to be an overwhelming amount of “If all you have is a hammer, everything looks
like a nail” mentality going around, at least insofar as trying to put nearly the
entire world on top of IP—this is only making, what Doc Searls referred to as
“the gating factor”, worse.

As technology develops, the lower layers of the technology become more and
more abstracted and hidden from the upper layers. Right now, it is doubtful if
many people care or concern themselves with whether their IP packets ride
over fiber or copper, the particular framing or link-level protocols being used,
etc. Because we can connect fiber and copper and wireless networks together,
we are not limited by the individual mediums.

Eventually, this is what is going to have to happen with IP and any other
protocols occupying this space—the “end-to-end (network) protocol” mentality
must give way to the “end-to-end application” mentality. One day, eventually,
the IP network will be replaced by something else. It's going to happen—but the
general mentality seems to be that an IP network must be IP end to end.
Building for that, designing for that, that attitude will slow down the
deployment of any future protocol technology...like IPv6.

One day, just as most people do not care whether their data are going end-to-
end over a particular physical media (as long as the desired quality of service
parameters are met), they will not care about the network protocol. When data
networks are not an “IP-only” club where only IP through-and-through networks
can play, but a true inter-net (as opposed to the current IP Internet, which is
more of a giant shared-address space Intranet) where the intra-net protocols
may all be different, then the barriers will be gone. Organizations will be freer
to develop and deploy new protocols and technologies internally without
getting ostracized by their peers for being different.

Erratum

In my interview in the June 2002 issue, my affiliation was mistakenly listed as
“Director of PythonLabs” rather than the correct “Director of PythonLabs at
Zope Corporation”.

—Guido van Rossum

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFRONT

Various

Issue #100, August 2002

HP to Hardware Vendors: Peddle That NDA Somewhere Else

HP to Hardware Vendors: Peddle That NDA Somewhere Else

Bruce Perens, Linux czar of Hewlett-Packard, has what he calls a “very good”
chance of getting a preference for Linux-compatible hardware made into
corporate policy at the new largest Linux vendor, the merged HP/Compaq.

The policy would mandate a company-wide “at design-in time, preference for
devices that have publicly documented interfaces”.

For HP engineers, it means that if you have a choice between two hardware
products, select the one for which an open-source driver exists or for which the
vendor publishes programming information. If a part comes with a
nondisclosure agreement, don't use it unless there's no alternative, or the
alternative would be prohibitively expensive.

How much less will NDA-shrouded hardware be worth to HP? Perens doesn't
put a number on it. Or, to look at it the other way, how much of a price
premium will HP be willing to pay to use a publicly documented device? The
advice to designers is “use your head”, he says.

“I was concerned about graphics display chips”, Perens said. ATI's low-end
graphics hardware is fairly clean, but at the high end, “They're all crazy”, he said.
The policy has already resulted in HP dropping NDA-covered modem chips for
openly documented ones.

Although the documented hardware policy was approved at a “corporate policy
level” within HP before the merger and was ready to become the standard
within the company, Perens has to get management of the new, merged
company to approve it all over again. “The merger has held off a lot of things,

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

and I have to get [Compaq managers] to be cognizant of the reason we need it”,
he said.

Just because HP laptops and PDAs will be Linux-friendly doesn't mean the
company will formally support Linux on them. There are no plans to offer a
Linux laptop or to commercialize Jim Gettys' work on running Linux and X on
the Compaq-now-HP iPAQ.

“Most of what I'm doing with Linux is servers”, Perens said. The merger's overall
effect on Linux at HP and Compaq? “Unless something awful happens it should
make it better.”

—Don Marti

Hot and Cool Linux Dot-Com Actually Makes Money

HOTorNOT.com offers a simple and democratic answer to a common but
embarrassing question: how good do I look? Voters play a kind of whack-a-
mole, only they whack human beings instead of moles and use a mouse
instead of a mallet, rating each candidate on scale of 1 to 10. As soon as one
gets rated, another pops up next to a thumbnail of the last one, with the
current rating.

The site was conceived in October 2000 by James Young and Jim Hong, a couple
of 27-year-old Berkeley-trained hackers, roommates and drinking buddies.
They were going to put it up on XMethods, their web site for publicly available
web services.

For what instantly became obvious reasons, they made HOTorNOT.com an
independent site. In just over a week, the site was getting almost two million
page views per day. By May of this year, HOTorNOT had counted over 2.1
billion votes and had over one million user accounts.

But here's what's really hot: it runs on Linux. “In fact”, James Hong recently told
us, “we couldn't have done it without Linux.” By “it”, he means make money.
According to Hong, HOTorNOT pulls in more than enough income to pay for
itself and its staff, which still consists of the original two guys.

That's because they've adapted quickly. “When the advertising business began
to crash, we added a paid 'meeting' service to the system.” The result was
countless dating success stories, including more than a few marriages. But the
most important success story is HOTorNOT's own.

http://HOTorNOT.com

“HOTorNOT is a viable business built entirely on Linux”, Hong says. More
specifically, “Linux (Red Hat), Apache, MySQL and PHP on 35 1U rackmounts,
mostly from Rackable Systems.” (See picture.)

—Doc Searls

LJ Index—August 2002

1. Number of countries considering a bill or motion to mandate or promote
free-software use by the government: 9

2. Number of complete sets of tapes required for one year of tape backups:
29

3. Number of sound cards and chipsets supported by ALSA (Advanced Linux
Sound Architecture): 94

4. Number of cards for which docs are available but no ALSA driver yet
exists: 20

5. Number of sound cards for which manufacturers are refusing to provide
documentation to the ALSA Project: 4

6. Length in characters of a Perl regular expression that matches any valid
URL: 7,579

7. Names in CREDITS for Linux 1.0: 80
8. Size of Linux 1.0 compressed: 1.2MB (15.4KB per contributor)
9. Names in CREDITS for Linux 2.4.18: 411

10. Size of Linux 2.4.18 compressed: 28.8MB (71.5KB per contributor)
11. Size in billions of dollars of the e-mail marketing industry: 1
12. Predicted average number of spam e-mails per inbox per year by 2006:

1,500
13. Number of spams accumulated in an idle inbox on Earthlink over the year

leading up to August 2001: 1,200
14. Number of spams accumulated in the same inbox between April 18 and

May 13, 2002: 1,124

15. Number of spams, received by one Linux Journal editor's inbox on May 1,
2002: 197

Sources

1: www.lugcos.org.ar/serv/mirrors/proposicion/doc/referencias/#ref.#1

2: com/~rick/linux-info/tape-backup

3-5: www.alsa-project.org/soundcards.php3

6: www.foad.org/~abigail/Perl/url2.html

7-10: kernel.org

11: San Jose Mercury News

12: Jupiter Media Metrix, www.jmm.com

13-15: LJ senior editor

Danish Navy Develops on Linux, Deploys on LynxOS

The Royal Danish Navy is going to sea with applications developed on Linux but
running on the Linux-compatible, real-time LynxOS from LynuxWorks
(lynuxworks.com). “The Linux interfaces are becoming the real-world definition
of open systems”, said Dr. Inder Singh, LynuxWorks' CEO.

“LynxOS is very unique in being a hard real-time operating system that is ABI-
compatible with Linux”, he added. The Royal Danish Navy doesn't even need to
recompile to move applications from Linux-based development systems
onshore to the LynxOS platform on ship.

LynxOS has been on the market for more than a decade and was designed into
Space Station Freedom before the project was re-organized as the International
Space Station. It is also used in Airbus jets. On the ground, LynxOS is also used
on HP LaserJet printers and Xerox copiers.

“Requirements for certification are pretty strenuous”, Singh said. Extensive
documentation is required, and no Linux-based system has yet been certified
for real-time space or military use. “There have been many attempts, but no
one has been able to get one certified”, Singh said.

Observers of Linux's inexorable progress add, “Yet”.

http://www.lugcos.org.ar/serv/mirrors/proposicion/doc/referencias/#ref.#1
http://com/~rick/linux-info/tape-backup
http://www.alsa-project.org/soundcards.php3
http://www.foad.org/~abigail/Perl/url2.html
http://www.kernel.org
http://www.jmm.com
http://lynuxworks.com

—Don Marti

Stop the Presses: Commons, 2; Hollywood, 0

The entertainment industry's war with technology goes back a long way. In
1984, MPAA Chairman Jack Valenti said, “The VCR is to the American film
producer and the American public what the Boston Strangler is to a woman
home alone.” But we can trace the current system of fears and balances back to
1908, when music publishers claimed player piano rolls violated music
copyrights. That case lost in the Supreme Court, but the industry prevailed on
Congress to establish the “mechanical license”, which established the right to
reproduce published music in return for a regulated royalty. In 1931 some
music composers claimed that a hotel's radio station violated copyrights by
playing their music. The composers lost that one. In the 1960s, book publishers
failed in their suit against photocopiers, but the Supreme Court ruling on the
case allowed “fair use” of published works. In the late 1960s and early 1970s,
broadcasters took on Community Antenna Television or CATV. (The movie
industry was also involved, forcing theater employees to wear buttons that said
“Fight Pay TV”.) Supreme Court rulings on two cases opened the way for the
cable TV systems we have today. So it's clear we're still in this fight for the very
long haul.

But at least we can pause to observe two current victories for technology over
those who would control it: the launch of Creative Commons and the Librarian
of Congress' rejection of CARP's (Copyright Arbitration Royalty Panel)
recommendations for imposing stiff requirements and performance use fees
on internet radio stations.

Creative Commons (www.creativecommons.org) was launched at the O'Reilly
Emerging Technologies Conference in Santa Clara, California, on May 16,
ending months of quiet development. It is led by Lawrence Lessig, Stanford Law
professor and author of two highly influential works (Code and Other Laws of
Cyberspace and The Future of Ideas), both of which argue against the
entertainment industry's constant campaign to bend copyright law in their
favor and to replace the Internet's commons with a highly regulated system for
the supply-controlled distribution of “content”.

The project lives at Stanford University, where it is highly involved with the
Stanford Law School Center for Internet and Society. It also receives what it
calls “generous support” from the Center for the Public Domain (formerly the
Red Hat Center), which is headquartered at Duke University and chaired by Red
Hat founder Bob Young.

http://www.creativecommons.org

Rather than simply lobbying against the entertainment industry, Creative
Commons offers concrete solutions to the first sources of creative goods: the
artists themselves. In his speech to the conference Lessig said,

This content that the law says is mine, I should be able
to make available on my own terms. We need
machine-readable expressions of the author's
intentions about the nature of the content. The world
should not be divided between those who believe in
control and those who believe in access. Those who
want both, on an individual level, should be able to
compromise.

While Creative Commons was in development, internet radio, which includes
thousands of stations (many of them making resourceful use of Linux and
other open-source software), was under severe threat by the CARP's
recommendations, which were issued in February 2002 and widely expected to
knock most stations off the air. If adopted, the CARP recommendations would
have become regulatory fact on May 22, 2002. But on May 21, the Librarian of
Congress issued an “order rejecting the panel's determination”, which would
become final one month later. Stations and advocacy groups like
SaveInternetRadio.org breathed a public sigh of relief.

But the issue is far from resolved. CARP is a creature spawned by the Digital
Millennium Copyright Act, which is still in force. More importantly, the whole
idea of the Commons is still not well understood—especially on Capitol Hill,
where the influence of the entertainment industry remains enormous.

In his speech Larry Lessig said, “We will never succeed in advocating the
importance of this space until ordinary people get it. And they won't until
technologists begin to express to politicians how important these values that
they built into technology are to freedom and creativity.”

—Doc Searls

They Said It

Today, if you've got end-to-end encrypted mail going in and out of your
company, it's probably somebody dealing drugs or sending or receiving
pornography inside your company.

—Greg Olson, chairman and cofounder, Sendmail.com

The true cause of the enormous ills that now dismay so many Americans—the
universal sleaze and “dumbing down”, the flood tide of corporate propaganda,
the terminal insanity of United States politics—has risen not from any grand

decline in the national character...but from the inevitable toxic influence of
those few corporations that have monopolized our culture.

—Mark Crispin Miller

As bad as the cell phone carriers' quality of service is, the last thing they want is
to lose control over their quality of service. That's why they don't understand
the appeal of 802.11. You can't do anything viral in their environment.

—Dave Sifry

If you operate a web site and wish to link to this site, you may link only to the
home page of the site and not to any other page or subdomain of us.

—Dallas Morning News, Terms of Service (on its registration page)

A man is judged by his Values; his Values are marked by that which he will not
compromise.

—G. E. Nordell

The social object of skilled investment should be to defeat the dark forces of
time and ignorance, which envelop our future.

—John Maynard Keynes

“Did you really think we want those laws observed?” said Dr. Ferris. “We want
them to be broken. You'd better get it straight that it's not a bunch of boy
scouts you're up against....We're after power and we mean it....There's no way
to rule innocent men. The only power any government has is the power to
crack down on criminals. Well, when there aren't enough criminals one makes
them. One declares so many things to be a crime that it becomes impossible
for men to live without breaking laws. Who wants a nation of law-abiding
citizens? What's there in that for anyone? But just pass the kind of laws that can
neither be observed nor enforced or objectively interpreted—and you create a
nation of law-breakers—and then you cash in on guilt. Now that's the system,
Mr. Reardon, that's the game, and once you understand it, you'll be much
easier to deal with.”

—Ayn Rand, Atlas Shrugged

Take what you want and pay for it, says God.

—Spanish proverb

Decisions are made by those who show up.

—Aaron Sorkin

The only obligation which I have a right to assume is to do at any time what I
think right.

—Henry David Thoreau

The Internet is obviously a critical part of any e-business. But the Internet is
only a common set of protocols for the transport of information.

—Sybase advertisement

And reading is only the common set of protocols for the translation of oral
words into written marks. And Sybase's products are only the semi-intentional
arrangement of bits.

—David Weinberger

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Welcome to the 100th Issue of Linux Journal

Richard Vernon

Issue #100, August 2002

While I'm sure that this is only the first hundred-mark of many, you might want
to keep this issue in good shape for putting in your children's time capsule.

I still tend to think of myself as a newcomer to the magazine, having been on
the masthead for only one-fifth of the now 100 issues. But those 20 issues have
been an enriching experience. Each issue has presented its own challenges and
dilemmas.

Some issues even hosted their own minor polemics. Nothing sparks comment
like nudity, and our staff had a lot of fun reading and choosing which of the
letters regarding the nude cover of the Python supplement to print. Then there
was the “American” debate, begun in the November 2000 issue, which also
spanned more than a couple of issues. Who could forget the QSOL
advertisement, also from the November 2000 issue? The “improper” implication
spawned some memorable press, but I'm sure it would never have happened if
we hadn't made the first step and put the naked man on the cover, obviously
giving QSOL the impression that we were “that kind of magazine”. QSOL's
following ad was as frightening as the previous ad was suggestive, perhaps in a
effort to take revenge on on those not yet prepared for their style of
advertising.

These events made the letters section perhaps the most-read part of the
magazine, but the most fun part of working for Linux Journal has been the
interaction with both the Linux community and the rest of the hardworking
Linux Journal staff.

As our magazine is one that relies on community-submitted content, I've been
fortunate to be able to get to know many very talented hackers. And I'm not
just talking about the famous members of the Linux community. Just as some
of the best actors in the world are only seen on community stages, some of the
smartest coders are garage hobbyists or work for small companies. The general

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

high level of goodwill that emits from our authors, regular contributing editors
and is evident throughout the community, consistently impresses me and
makes my job a much happier one. Our reliance on you—our readers and
contributors—makes this 100th issue celebration as much yours as it is ours.
Sincere thanks for all of your help and support.

Richard Vernon is editor in chief of Linux Journal.

Wish you were here.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Various

Issue #100, August 2002

Questions and Answers

Where's My FireWire CD-ROM?

I recently bought a Sony R505 laptop and when I tried to install SuSE Linux, I
discovered that after the boot, Linux could not see the CD-ROM. It turned out
that the docking station where the CD-ROM lives is accessed from the
computer via FireWire somehow.

—Steven Smith, sjs@chaos-tools.com

Your confusion may be due to differing procedures for the various distributions
available. For SuSE, there is a basic HOWTO guide in their knowledge base,
which you can access by visiting sdb.suse.de/en/sdb/html/tbraza_dosinst.html.
This should get you headed in the right direction.

—Chad Robinson, crobinson@rfgonline.com

I Have No Qt and I Must Run KDE 3.0

Are there RPM packages for the latest versions of Qt and KDE?

—Dan, dhdeang@SoftHome.net

To locate RPMs, I find rpmfind.net to be a helpful portal. In this case, there is a
page specifically for Qt and KDE: rpmfind.net/linux/RPM/
Development_KDE_and_QT.html. On that page I note that Qt 3.x is still listed as
a development package, but it is available.

—Chad Robinson, crobinson@rfgonline.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sjs@chaos-tools.com
http://sdb.suse.de/en/sdb/html/tbraza_dosinst.html
mailto:crobinson@rfgonline.com
mailto:dhdeang@SoftHome.net
http://rpmfind.net
http://rpmfind.net/linux/RPM/Development_KDE_and_QT.html
http://rpmfind.net/linux/RPM/Development_KDE_and_QT.html
mailto:crobinson@rfgonline.com

Raiders of the Lost DDS-3 Tape

I'm trying to read a DDS-3 tape made on an HP9000 machine running HP-UX 11.
I'm trying to read it using my Linux server that runs Red Hat 7.2 (2.4.9.31SMP
kernel). The Linux server tape drive is a Sony SCSI device, /dev/st0. The tape
contains Oracle export files of a large Oracle database. The HP machine is no
longer available, and I'm trying to rebuild the DB on Linux. When I try to read
the tape with either tar -tvf /dev/st0 or tar -xvf /dev/st0 I always get:

Input/Output error at the beginning of the tape, error is not
recoverable, exiting now

Why?

—Adrian Manship, adrian.manship@skynet.be

Check two things related to the tape drive. First, DDS drives support the
concept of hardware compression, which may have been used by HP-UX and
may not be enabled by Linux. If there is a mismatch in this setting, that can
cause problems reading the tape.

Second, although tar itself is a relatively standard format, is it possible that the
tape was not created using tar? Depending on the version of Oracle used to
create the tape, it may have internal support for reading/writing tape devices as
backup media. Check a small sample of the file to be sure it is actually in tar
format by running dd if=/dev/st0 of=/tmp/tape bs=512 count=16, replacing the
bs value with a block size that works well for your drive and the count value
with a count that yields a sufficient number of those blocks to take a quick look.
This example will read 8K from the tape.

Perhaps the tape itself is bad. If it succeeds, you should be able to use a hex
editor or text editor that can handle high-ASCII characters without choking to
verify the format of the contents of the tape. In case you aren't familiar with the
general format, each file entry should start with its filename, followed by a
header that contains miscellaneous file information such as size and
permissions, followed by the file itself.

—Chad Robinson, crobinson@rfgonline.com

The easiest thing to do, would be to buy/borrow/steal a similar machine to do
the restore.

—Christopher Wingert, cwingert@qualcomm.com

I used to work with HP-UX DDS tapes, and most of the time they were used with
the cpio utility. Keep in mind that cpio is a complicated utility with many

mailto:adrian.manship@skynet.be
mailto:crobinson@rfgonline.com
mailto:cwingert@qualcomm.com

options, so check the manual pages (man cpio) and play around with some of
the options. Be careful not to write your tape accidently; I suggest that you
physically enable the write-protect feature on the cartridge. Look at
www.lns.cornell.edu/public/COMP/info/cpio/cpio_2.html for a simple cpio
tutorial.

—Felipe E. Barousse Boué, fbarousse@piensa.com

No Screensaver for root

When I sign on using root, the screensaver does not work. When I sign on with
another ID, it does. How can I make it work when signed on as root?

—James Logan, jlogon@mail.ewu.edu

xscreensaver will not work as root on purpose. It's a security feature; you're not
supposed to run X as root (log in as a user and use su - where needed). This is
explained in the FAQ, along with a solution to how to run X programs as root if
you need to (www.jwz.org/xscreensaver/faq.html#root-lock).

—Marc Merlin, marc@merlins.org

New Install Won't Boot

I attempted to install Red Hat 6.2 on my spare machine. The install ran fine and
completed. I removed the disks and rebooted, and I keep getting a nonsystem
disk error telling me to replace the disk.

—Tim Dreas, timdreas_@hotmail.com

It seems like either LILO or GRUB, the boot loaders, were never installed
correctly. If you made a rescue disk during the installation (of course you did,
right?), use it to boot your computer. When you get the root Linux shell prompt
(#), type lilo -v, which should attempt to write the boot loader into your hard
disk.

—Felipe E. Barousse Boué, fbarousse@piensa.com

How Do I Remove a User

How do I remove a user from a group? (We deleted the user and now are
receiving error messages that there is a permanent fatal error when someone
e-mails this group.) How do we correct this?

—Barbara Viola, bviola@viotechsolutions.com

http://www.lns.cornell.edu/public/COMP/info/cpio/cpio_2.html
mailto:fbarousse@piensa.com
mailto:jlogon@mail.ewu.edu
http://www.jwz.org/xscreensaver/faq.html#root-lock
mailto:marc@merlins.org
mailto:timdreas_@hotmail.com
mailto:fbarousse@piensa.com
mailto:bviola@viotechsolutions.com

I assume you mean mail alias and not a UNIX group. Check out /etc/aliases and
remove the user. Then run newaliases.

—Christopher Wingert, cwingert@qualcomm.com

To remove a user from a group, not just from an e-mail alias, use the gpasswd

command as root:

gpasswd -d name_of_deleted_user

Take a look at man gpasswd. It gives an explanation and options for other
group administrating functions.

—Paul Christensen, pchristensen@penguincomputing.com

I Have No Static IP Address and I Must SMTP

Is it possible to have an internet mail server with a dial-up connection to an ISP?
I know that the IP address of ppp0 may change whenever I establish a new
connection with the ISP. The MX records need to point to the mail server; the IP
address of the server also must be specified at dewdesigns but will not be valid
if or when I get a new connection. Do I need to run DNS locally or can I use the
ISP DNS? I recently read an article by Marcel Gagné regarding small-office mail
servers, but I feel that I am missing some pieces of the puzzle.

—Daryl E. Murray, daryl@Planet4us.net

There are ways to have an SMTP server on a dial-up dynamic IP and set up DNS
so that it gets updated every time you change your IP address, but trust me,
you do not want to go there. Short of running UUCP, which is the correct way to
route mail in your case (UUCP is quite old, not well-known by most system
administrators and probably not supported by your ISP), you should use
Fetchmail to download your mail. If you need to download mail for many
accounts, you can have your ISP spool all your mail in one mailbox, download
that with Fetchmail, and split it up again, looking at the Envelope-To: field or
whatever field in which your ISP stored the original Envelope-To.

—Marc Merlin, marc@merlins.org

You only can use Fetchmail to download all of your site's mail if your ISP
consistently applies an Envelope-To: header to your mail. See the warning at
www.catb.org/~esr/fetchmail/fetchmail-man.html#25.

mailto:cwingert@qualcomm.com
mailto:pchristensen@penguincomputing.com
mailto:daryl@Planet4us.net
mailto:marc@merlins.org
http://www.catb.org/~esr/fetchmail/fetchmail-man.html#25

If you have a dial-up with a static IP address, and your ISP is willing to queue
incoming mail for you, you can do an SMTP ETRN when the connection comes
up. Sendmail includes a utility to do this.

—Don Marti, info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

Heather Mead

Issue #100, August 2002

The latest technology.

Eclipse Database Center

Linux NetworX announces their Eclipse Database Cluster, based on the Oracle9i
Real Application Cluster architecture. The ready-to-run system offers scalability,
reliability and high availability for data warehousing, on-line transaction
processing and data management applications. The cluster is built with
multiple Xeon processors, Dot Hill storage components and high-speed Gigabit
Fibre Channel interconnects. The Eclipse is integrated with ICE cluster
management tools to provide remote power control, temperature sensing and
real-time monitoring.

Contact Linux NetworX, 8689 South 700 West, Sandy, Utah 84070,
801-562-1010, www.linuxnetworx.com.

Tetra Platform

The Tetra hardware platform from Equator Technologies provides a compact
and modular reference design that allows rapid development of products such
as IP smart cameras, digital video recorders and IP-based internet streaming
video appliances. The modular design includes the Tetra CPU board, an open
peripheral interface for add-on modules and various add-on personality
modules. All common CPU board core features, such as the BSP chip family,
memory subsystems and Ethernet interface, are on the CPU board for a final
size of 2.75" × 4". It comes with 64MB SDRAM and 4MB Flash memory; analog
audio out and SPDIF audio in/out, 10/100Base-T Ethernet; and support for
Linux or VxWorks.

Contact Equator Technologies, Inc., 300 White Oaks Road, Campbell, California
95008, 408-369-5200, sales@equator.com, www.equator.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxnetworx.com
mailto:sales@equator.com
http://www.equator.com

Cobalt RaQ 550

Sun's Cobalt RaQ 550 is a 1U rackmount server appliance preconfigured with a
host of software and hardware for the deployment of e-mail, web hosting and
other internet applications. Designed for small to mid-sized companies looking
to handle their internet and web applications in-house, the RaQ 550 has a
1.26GHz processor, up to 2GB memory and two 80GB drives with support for
RAID 0 and 1. Preconfigured software includes Apache web server, Apache
Tomcat, Sendmail, Bind DNS server, JSP, InterBase 6 SQL, MySQL, PostgreSQL,
PHP, Perl, Python, SSH v2, 128-bit SSL, SNMP agent and Legato NetWorker and
Knox Arkeia backup clients.

Contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California
95054, 800-555-9786 (toll-free), www.sun.com/cobalt.

BladeRack RS-1100V

RackSaver offers its latest entry in the blade server market, the BladeRack
(patent-pending). The BladeRack houses up to 66 RS-1100RV RackBlades, each
containing up to two 2.4GHz Xeons for a total of 132 processors in a 7' portable
cabinet. AMD-based processors also may be used. The BladeRack can be
configured with 66GBs of DDR ECC PC-2100 Corsair memory, based on
Supermicro's P4DPR-6GM+ motherboard. In addition, the BladeRack is easily
scalable and accessible, with hot-swap capabilities for the fans, networking
equipment and servers themselves. Using nonproprietary, interchangeable off-
the-shelf components, the BladeRack is targeted at 3-D rendering, research
centers, universities and other data-intensive uses.

Contact RackSaver, Inc., 9449 Carroll Park Drive, San Diego, California 92121,
858-874-3800, inquiries@racksaver.com, www.racksaver.com.

Xcelerix Embedded IMDB

Xcelerix announced the formal launch of the company and the general
availability of Xcelerix In-Memory Database (IMDB), formerly known as ERDB.
Xcelerix IMDB's architecture prejoins database tables based on known
operational queries and uses binary tree indexing, helping to eliminate
bottlenecks and enabling up to one million transactions per second (SQL
benchmark results). A small footprint and a 20:1 compression of memory
resources ratio allows the Xcelerix IMDB to be embedded in response-sensitive,
real-time applications. It is available in both 32- and 64-bit versions for a variety
of platforms. Xcelerix IMDB supports integration with disk-based database
systems, in addition to SQL, TCP/IP, IEEE 802.3 and POSIX.

http://www.sun.com/cobalt
mailto:inquiries@racksaver.com
http://www.racksaver.com

Contact Xcelerix Corporation, 9000 Keystone Crossing, Suite 900, Indianapolis,
Indiana 46240, 800-473-9012 (toll-free US), www.xcelerix.com.

Linux USB 2.0 Driver

Cypress Semiconductor released a Linux USB host driver that supports their
SL811HS embedded host/peripheral controller, enabling developers to add USB
host functionality to a variety of embedded applications, such as cell phones,
PDAs and network appliances. Because the SL811HS controller is a memory-
mapped device, the driver lets the Linux host stack provide USB support
without realizing a non-OHCI/UHCI type host controller is present. The SL811HS
host controller has a dual-role port that can function as either a USB host or a
peripheral supporting both full- and low-speed USB devices. Source code for
the driver is available at www.cypress.com/press/linux.

Contact Cypress Semiconductor Corporation, 3901 North First Street, San Jose,
California 95134, 408-943-2600, www.cypress.com.

Fitrix

Fitrix is a source-code business software package that provides accounting,
order processing and custom software tools for small to medium-sized
businesses. In addition to accounting and distribution modules, Fitrix includes
the application source code (written in Four J's Business Development
Language (BDL), a 4GL derivative that is optimized for business database
applications), 4GL programming tools, a RAD toolset and an SQL database.
Custom functions and modules can be written in C and Java and directly
embedded into the 4GL code. Fitrix also uses a thin client, so processing is done
on the host system, keeping traffic to a minimum and allowing multiple clients
to use one set of software simultaneously.

Contact Fourth Generation Software Solutions, 2814 Spring Road, Suite 300,
Atlanta, Georgia 30339, 770-432-7623, info@fitrix.com, www.fitrix.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.xcelerix.com
http://www.cypress.com/press/linux
http://www.cypress.com
mailto:info@fitrix.com
http://www.fitrix.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/100/toc100.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	Linux Timeline
	LWN
	LJ Staff
	August 1991
	September 1991
	April 1992
	October 1992
	June 1993
	August 1993
	March 1994
	June 1994
	August 1994
	September 1994
	December 1994
	April 1995
	January 1997
	January 1998
	February 1998
	March 1998
	April 1998
	May 1998
	June 1998
	July 1998
	September 1998
	October 1998
	December 1998
	January 1999
	February 1999
	March 1999
	April 1999
	May 1999
	August 1999
	September 1999
	October 1999
	November 1999
	December 1999
	January 2000
	February 2000
	March 2000
	April 2000
	May 2000
	June 2000
	July 2000
	August 2000
	September 2000
	October 2000
	December 2000
	January 2001
	March 2001
	April 2001
	May 2001
	June 2001
	July 2001
	November 2001
	February 2002

	Supporting IPv6 on a Linux Server Node
	Ibrahim Haddad
	Linux IPv6 Implementations
	Supporting IPv6 in the Linux Kernel
	IPv6 Binaries and Tools
	net-tools
	iputils
	NetKit Utilities
	Optional Utilities
	libpcap and tcpdump
	xinetd with IPv6 Support
	IPv6 Applications
	Connecting to the IPv6 Internet
	Conclusion
	Acknowledgements

	Bare Metal Recovery, Revisited
	Charles Curley
	The Flaw
	A Script-Writing Script
	Using Redirection
	How It Works
	Disk Labels
	Disk Partitions
	Bad-Block Checking
	Using the Script
	Improvements

	The Linux Router
	Kaleem Anwar
	Muhammad Amir
	Ahmad Saeed
	Muhammad Imran
	Setting Up a Linux Router
	Performance of Linux Router
	Bandwidth Measurement
	Stability
	Easy to Handle
	Comparison with a Commercial Router
	Conclusion
	Acknowledgements

	The Beowulf Evolution
	Glen Otero Ferri
	The Roots of Beowulf
	First-Generation Beowulf
	Second-Generation Beowulf
	BProc
	The Scyld Implementation
	Acknowledgements

	How a Poor Contract Sunk an Open-Source Deal
	Henry W. III
	Snapshot of a Train Wreck
	Deafening, Deadly Silence
	Learning Lessons from Others' Wrecks: Code Your
Contracts Like Your Software
	Frightful Images: Ships Passing in the
Night
	When Going to Rome, Study Ahead
	What to Think; What to Do

	Hey Embedded Developers! Buy This Magazine!
	Don Marti

	The tty Layer
	Greg Kroah-Hartman
	No Read?
	The Tiny tty Driver
	Flow of Data
	The tty Interface over Time
	Conclusion

	Embedded System àla Carte
	Peter Ryser
	Michael Baxter

	GNU Bayonne Is for Telephony
	David Sugar
	First Came ACS
	How ACS Became GNU Bayonne
	Today and Tomorrow

	Kernel Locking Techniques
	Robert Love
	Why Do We Need Locking in the Kernel?
	SMP Locks in a Uniprocessor Kernel
	Atomic Operators
	Spinlocks
	Semaphores
	Reader/Writer Locks
	Big-Reader Locks
	The Big Kernel Lock
	Preemption Control
	Conclusion

	At the Forge: Why Linux?
	Reuven M. Lerner
	Cost and Stability
	Fixing Bugs
	No Secrets
	High-Quality Toolkits
	Happy Birthday!

	Cooking with Linux: Strike up the Band and Celebrate!
	Marcel Gagné

	Paranoid Penguin: Using iptables for Local Security
	Mick Bauer
	The Problem
	The Tool
	Miscellaneous Notes on owner Matching and
Stunnel

	Internet Abuse
	David A. Bandel

	Where No Penguin Has Gone Before
	Rick Lehrbaum
	Tux Searches for Santa
	More Cool Gadgets with Embedded Linux
Inside
	And More All the Time

	Linux for Suits: Scoring 100
	Doc Searls

	Fair Use
	Lawrence Rosen

	ASA 2URS3 Rackmount 2U Server
	Logan G. Harbaugh

	ImageStream's Rebel Router
	Paul M. Holzmann

	OmniCluster Technologies' SlotServer
	Linda Hypes

	Benchmark's ValuSmart Tape 80
	Cosimo Leipold

	Letters
	Letter Editor
	Eyes Opened—Looking for Lurkers
	Humor in Advertising
	Trivial Correction
	Suggestions Welcome?
	Social Destruction
	Protocol Problems
	Erratum

	UpFRONT
	Various
	HP to Hardware Vendors: Peddle That NDA
Somewhere Else
	Hot and Cool Linux Dot-Com Actually Makes
Money
	LJ Index—August
2002
	Sources
	Danish Navy Develops on Linux, Deploys on
LynxOS
	Stop the Presses: Commons, 2; Hollywood,
0
	They Said It

	Welcome to the 100th Issue of Linux Journal
	Richard Vernon

	Best of Technical Support
	Various
	Where's My FireWire CD-ROM?
	I Have No Qt and I Must Run KDE 3.0
	Raiders of the Lost DDS-3 Tape
	No Screensaver for root
	New Install Won't Boot
	How Do I Remove a User
	I Have No Static IP Address and I Must
SMTP

	New Products
	Heather Mead
	Eclipse Database Center
	Tetra Platform
	Cobalt RaQ 550
	BladeRack RS-1100V
	Xcelerix Embedded IMDB
	Linux USB 2.0 Driver
	Fitrix

